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Abstract—In practical applications, particularly in flexible
manufacturing systems, there is a high level of uncertainty. A
type-2 fuzzy logic system (T2FS) has several parameters and an
enhanced ability to handle high levels of uncertainty. This study
proposes an improved artificial immune system (IAIS) algorithm
to solve a special case of the flexible job shop scheduling problem
(FJSP), where the processing time of each job is a nonsymmetric
triangular interval T2FS (IT2FS) value. First, a novel affinity
calculation method considering the IT2FS values is developed.
Then, four problem-specific initialization heuristics are designed
to enhance both quality and diversity. To enhance the exploitation
abilities, six local search approaches are conducted for the routing
and scheduling vectors respectively. Next, a simulated annealing
method is embedded to accept antibodies with low affinity, which
can enhance the exploration abilities of the algorithm. Moreover,
a novel population diversity heuristic is presented to eliminate
antibodies with high crowding values. Five efficient algorithms
are selected for a detailed comparison, and the simulation results
demonstrate that the proposed IAIS algorithm is effective for
IT2FS FJSPs.

Index Terms—flexible job shop;type-2 fuzzy processing time;
artificial immune system; energy consumption

I. INTRODUCTION

THE scheduling problem is an important research topic,
as it is often a key challenge in many applications [1]-

[9] The typical scheduling problems include the flow shop
problem (FSP) [1], [2], hybrid flow shop (HFS) problem [3],
[4], job shop problem (JSP) [5], flexible job shop problem
(FJSP) [6], and distributed flow shop problems (DFSP) [7], [8].
FJSPs are more practical than the other types of scheduling
problems because they consider more realistic constraints. In
an FJSP, n jobs are scheduled on m machines, where each
job has its own route at each stage, and each stage has a set
of candidate machines. The machine flexibility enhances the
system performance; however, it increases the complexity of
the problem. Due to the problem complexity, meta-heuristics
have been investigated for FJSPs, such as the evolutionary
optimization method [6], genetic algorithm (GA) [10], [11],
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artificial bee colony (ABC) algorithm [12], and particle swarm
optimization (PSO) [13]. Recently, an accelerated simulated
annealing (ASA) algorithm [14], a discrete Jaya algorithm
[15], a multiagent and bargaining-game-based heuristic [16],
two-phase meta-heuristic (TPM) [17], and a modified iterated
greedy (MIG) algorithm [18] have been proposed to solve
FJSPs.

There are various realistic constraints for applying the
FJSP in an industrial production system, such as sequence-
dependent setup times [19], and fuzzy processing time con-
straints. In particular, the fuzzy processing time in uncertain
environments is a commonly used realistic constraint. Kacem
et al. developed an approach hybridization of evolutionary
algorithms and fuzzy logic for the problem [20]. Subsequently,
various meta-heuristics have been studied, such as the co-
evolutionary GA by Lei [21], chemical-reaction optimization
(CRO) by Li and Pan [22], the ABC algorithm [23], [24],
[25], hybrid biogeography-based optimization by Lin [26],
estimation of distribution algorithm (EDA) by Liu et al. [27],
the tabu search (TS) algorithm by Palacios et al. [28], and
the memetic algorithm (MA) [29].The hybridization of various
heuristics can generally improve the algorithm performance,
and examples include the backtracking search based hyper-
heuristic [30] and the hybrid cooperative coevolution algorithm
(hCEA) [31]. In addition, several studies have applied fuzzy
FJSPs in realistic applications, including a semiconductor
manufacturing system [32], a typical industrial production sys-
tem with crane transportation [33], and a green manufacturing
system [34].

Many types of realistic applications should consider the
fuzzy features due to the uncertainty of the system, such
as traffic lights systems[35], and robotic path planning
systems[36]. However, in most realistic applications, espe-
cially the industrial production systems, the level of uncer-
tainty is high. Compared to T1FSs, a type-2 fuzzy logic system
(T2FS) has more parameters and enhanced abilities to handle
a high level of uncertainty[37], [38], [39]. Naturally, T2FLSs
have exhibited better performance than T1FLSs in many
research fields, especially in modeling, prediction, and control
applications [40], [41], [42], [43], [44]. For example, the
fuzzy logic approach for dynamic parameter adaptation was
investigated by Melin et al. [45], Castillo et al. [46], and Olivas
et al. [47]. The image processing based on generalized type-2
fuzzy logic was conducted by Melin et al. [48]. The multi-
objective scheduling of tasks in an Industry 4.0 ecosystem
with interval type-2 fuzzy timing constraints was studied by
Shukla et al. [49]. The other typical applications include noise
robustness of type-2 fuzzy logic controllers [50], linguistic
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word modelling[51], and time series prediction [52].
Nevertheless, existing studies mainly consider a Type-1

fuzzy logic system (T1FLS) in the FJSP, where each value
can be represented by a triangular fuzzy number (TFN) and
other types of numbers. The uncertainty levels in realistic
applications are generally too high to be represented by
a deterministic value or a triangular fuzzy number (TFN)
value. For example, the processing time for any operation
in the steelmaking system is generally determined by many
realistic factors. Considering all of the factors, the processing
times should be set as type-2 fuzzy values to handle high
levels of uncertainty of the realistic system. Therefore, to
model and simulate realistic production processes, T2FSs
should be considered in the FJSP, which is a challenging
task. During recent years, we have considered developing
many types of efficient optimization algorithms, such as the
fruit fly optimization algorithm (FOA) for the realistic hybrid
flowshop rescheduling problem in steelmaking systems [4],
hybrid artificial bee colony algorithms for a parallel batching
distributed flowshop problem [8], Pareto-based discrete artifi-
cial bee colony algorithm for multi-objective FJSPs [12], and
chemical-reaction optimization for fuzzy job shop scheduling
problems [22]. In addition, we have also investigated the
theory and applications of the type-2 fuzzy system [43], such
as the monotonicity of interval type-2 fuzzy logic systems, a
fast learning method for data-driven design of interval T2FSs
[44], and the applications to linguistic word modelling [51].
However, based on the literature review presented above, there
is no existing literature that consider the interval type-2 fuzzy
system in the FJSPs.

Recently, a meta-heuristic called artificial immune system
(AIS) has been applied for realistic optimization problems[53].
Jiao and Wang developed an immune genetic algorithm (IGA)
and applied it to solve the traveling salesman problem (TSP)
[54]. Several studies have used the AIS algorithm to solve
the flow shop scheduling problems, such as the blocking flow
shop problems [55], and the distributed flow shop [56]. To
consider more flexible features of realistic applications, Engin
and Döyen constructed a method based on AIS to solve HFSs
[57]. The assembly HFS problem was solved in [58], [59], and
the AIS algorithm has been used to solve FJSPs [60], [61].

Keeping the above consideration in mind, this study pro-
poses an improved version of the AIS, named IAIS, to solve
the interval T2FS (IT2FS) FJSP problems. Our main contribu-
tions are as follows: (1) The IT2FS FJSP is firstly investigated
by an improved AIS algorithm, where the processing time,
the fuzzy starting time, and the fuzzy completion time of
each operation are set as interval type-2 fuzzy values. (2)
considering the IT2FS features, a novel affinity calculation
heuristic is developed to set the IT2FS starting time for each
operation; (3) two objectives are considered simultaneously,
including minimization of the maximum IT2FS completion
time and the energy consumption; (4) four problem-specific
initialization heuristics are designed to enhance both quality
and diversity; (5) six local search approaches are conducted
for the routing and scheduling vectors respectively, to enhance
the exploitation abilities; (6) a simulated annealing method is
embedded to accept antibodies with low affinity, which can

enhance the exploration abilities of the algorithm; and (7) a
novel population diversity heuristic is presented to eliminate
antibodies with high crowding values.

The remainder of this paper is organized as follows: In
Section II, we introduce the related methods, including IT2FS
concepts and the canonical AIS algorithm. In Section III,
we briefly introduce the considered problem, and in Section
IV we describe the proposed algorithm. In Section V, we
present experimental comparisons and analysis are presented
in Section V. Finally, in Section VI, we give the conclusions
and ideas for future work.

II. RELATED METHODS

A. IT2FS basic concepts

A type-2 fuzzy set, say Ã, is generally characterized by a
membership function µÃ(x, u), where x ∈ X , and u ∈ [0, 1].
Based on the membership function, the definition of the T2FS
is given as follows:

Ã = {((x, u), µÃ(x, u))|∀x ∈ X, ∀u ∈ [0, 1]}, 0 ≤ µÃ(x, u) ≤ 1
(1)

An interval T2FS (IT2FS), denoted as ÃI , is a special case
of T2FS, which is generally characterized as [39], [49]

ÃI = {((x, u), 1)|∀x ∈ X, ∀u ∈ [0, 1]} (2)

The footprint of uncertainty (FOU) of Ã is calculated as
follows:

FOU(Ã)=∪x∈X Jx (3)

The upper membership function (UMF) and lower mem-
bership function (LMF) of Ã are denoted

_
µ
Ã(x) and µ

Ã
(x) ,

∀x ∈ X , respectively.
_
µ
Ã(x) ≡ FOU(Ã) ∀x ∈ X (4)

µ
Ã
(x) ≡ FOU(Ã) ∀x ∈ X (5)

The following formulation gives a simple way to calculate
the centroid of a nonsymmetric triangular interval T2FS,
where the lower membership function is not symmetric. Fig. 1
presents a chart for this type of system.

CÃ ≈ [m − (b − ar )(al + 2ar + b)
6(al + ar )

,

m +
(b − al)(2al + ar + b)

6(al + ar )
] (6)

B. IT2FS operators

(1) Addition operator
Given two interval type-2 fuzzy variables

Ã = (a1, a2, a3, a4, a5) and B̃ = (b1, b2, b3, b4, b5) , then
the addition operator is expressed as follows:

Ã + B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5) (7)

(2) Ranking operator
Given two interval type-2 fuzzy variables

Ã = (a1, a2, a3, a4, a5) and B̃ = (b1, b2, b3, b4, b5) , calculate
the centroid values CÃ and CB̃ for the two variables Ã and B̃
, respectively.
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x

Fig. 1. Nonsymmetrical triangular interval T2FS (Type I).

CÃ=[CU
Ã
,CL

Ã
] ≈

[
a3 − (a5−a4)(a5+2a4−a2−2a3)

6(a4−a2) ,

a3 +
(a5+a2−2a3)(a5+a4−2a2)

6(a4−a2)
(8)

CB̃=[C
U

B̃
,CL

B̃
] ≈

[
b3 − (b5−b4)(b5+2b4−b2−2b3)

6(b4−b2) ,

b3 +
(b5+b2−2b3)(b5+b4−2b2)

6(b4−b2)
(9)

Condition 1. If CÃ >(<) CB̃ , then Ã >(<) B̃; otherwise,
check condition 2.

Condition 2. If a3 >(<) b3 , then Ã >(<) B̃; otherwise, check
condition 3.

Condition 2. If (a5 − a1) >(<) (b5 − b1), then Ã >(<) B̃.
For example, consider two type-2 fuzzy numbers, T̃1 =(2,

4, 6, 8, 12), and T̃2=(1, 5, 8, 12, 15). According to the above
ranking method, CT̃1

= [4, 8], (CU

T̃1
+CL

T̃1
)/2 = (4+8)/2 = 6; CT̃2

= [6.71, 9.62], (CU

T̃2
+CL

T̃2
)/2= (6.71+9.62)/2 = 8.17. Therefore,

T̃1 < T̃2 .

C. The canonical artificial immune algorithm

In an AIS, there is a population of antibodies, each of which
represents a solution. The antibody with high solution quality
is assigned a higher affinity.

After generating the initial population, a certain number of
antibodies are initially selected and used to generate clone
antibodies, which is similar to the mutation procedure in a
GA. Unlike the mutation operator in a GA, antibodies with
higher affinity have a larger number of clones. Therefore, a
larger number of searching tasks are performed around the
promising space, and the exploitation abilities of the algorithm
are enhanced. Next, the newly generated clones are evaluated
and used to update the parent clones. This process is repeated
until one of the termination conditions is met.

III. PROBLEM DESCRIPTION

Considering a realistic production procedure in a typical
steelmaking system, as shown in Fig. 2, the molten iron in a
device, called a torpedo car (TPC), is generally considered as
scheduling unit and is called a charge or a job in the system.
The charge is processed in five stages. Each charge or job has
its own route dynamically assigned according to the current
device state; that is, the route differs for different jobs. In each

Algorithm 1: The canonical AIS
Input: input parameters
Output: the best solution found so far.

1 Initialize the antibodies;
2 Calculate the objective value of each antibodies;
3 Choose some antibodies and clone them according to

their affinities;
4 Perform the mutation operator on the cloned antibodies

to obtain new antibodies;
5 Update the antibodies according to the greedy rule;
6 Record the best antibody;
7 if the stooping criterion is satisfied then
8 end the algorithm;
9 else

10 go to step 2.
11 end

stage, each charge selects one machine from the candidate
machine set; machine selection is thus flexible. Based on the
above analysis of scheduling in a steelmaking system, we can
model this scheduling as an FJSP problem.

Most of the current studies consider a deterministic pro-
cessing environment [6], [13], [14], [16] or a type-1 fuzzy
scenario [20], [21], [22]. In the deterministic environment, the
common assumption is to set the processing time for each
operation as a deterministic value. In a type-1 fuzzy scenario,
the processing time is generally set as a TFN value. Due to
the uncertainty in realistic applications, the processing time
of a deterministic value or a TFN value cannot adapt to the
realistic production systems. For example, the processing time
for any operation in the steelmaking system are determined by
many realistic factors, such as the temperature of the current
processing machine, the fatigue degree of the device, and the
proficient degree of the manpower. Considering all of the
factors, the processing time of any operation should be set
as a type-2 fuzzy value to handle high levels of uncertainty of
the realistic system.

In addition, a crane is considered to transport each operation
after its completion in a previous stage. This study aims
to minimize the weighted value of the makespan and the
energy consumption during machine processing and crane
transportation. Based on the features of the problem, there
are four main types of tasks: (1) how to assign a suitable
machine for each operation; (2) how to schedule all assigned
jobs for each machine; (3) how to determine the fuzzy starting
and completion times of each operation; and (4) how to
determine the crane transportation routes to minimize the
objective considered in this study.

A. Assumptions

• Each job has a given number of operations and should be
processed on one machine selected from a set of suitable
machines.

• Each machine is available and should be powered on
continuously. Preventive maintenance and machine break-
down activities are not considered.
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Fig. 2. Typical FJSP in a steelmaking system.

• Pre-emption is not available.
• Overlapping is not permitted during crane transportation.
• The crane device works continuously without any mal-

function.
• Sufficient buffers between any two machines can store

the completed operations while waiting for the crane
transportation or successor machine.

• The arrival time of the operations by transportation using
the crane device must be equal to or greater than the
available time of the successor machine.

• No crane is required for different operations belonging to
the same job on the same machine.

• No crane is required for the first operation of each job.
• The processing time of each charge or job is a type-2

fuzzy value rather than a given value.

B. Notations

Indices:

. m: The number of machines.

. n: The number of jobs.

. j: The index of jobs.

. i: The index of operation.

. k: The index of machines.

Variables:

. Oi, j : The ith operation of job j, i=1,2,,θ j .

. T̃ si, j : The fuzzy starting time of Oi, j , represented by a
type-2 fuzzy value: T̃ si, j =(ts1, ts2, ts3, ts4, ts5).

. T̃ci, j : The fuzzy completion time of Oi, j , represented by
a type-2 fuzzy value: T̃ci, j =(tc1, tc2, tc3, tc4, tc5).

. Emp: Total energy consumption of the machining process.

. Ect : Total energy consumption of the crane transportation.

. Eno: Total energy consumption of the no-load operation
of the crane.

. Ens: Total energy consumption of the no-load standby of
the crane.

. Els: Total energy consumption of the load standby of the
crane.

. Elo: Total energy consumption of the load operation of
the crane.

. Eno(Oi, j): No-load operation energy consumption of Oi, j .

. Ens(Oi, j): No-load standby energy consumption of Oi, j .

. Els(Oi, j): Load standby energy consumption of Oi, j .

. Elo(Oi, j): Load operation energy consumption of Oi, j .

. T̃ls(Oi, j): Load standby time of Oi, j , represented by a
type-2 fuzzy value: T̃ls(Oi, j)=(tls1, tls2, tls3, tls4, tls5).

. T̃lo(Oi, j): Load operation time of Oi, j , represented by a
type-2 fuzzy value: T̃lo(Oi, j)=(tlo1, tlo2, tlo3, tlo4, tlo5).

. T̃l f (Oi, j): Load lifting time of Oi, j , represented by a type-
2 fuzzy value: T̃l f (Oi, j)=(tl f1, tl f2, tl f3, tl f4, tl f5).

. Ψ < Oi1, j1,Oi, j >: The relationship set when the crane is
to serve Oi, j after completing the service for Oi1, j1.

. Φ < Oi−1, j,Oi, j, k, k2 >: The relationship set when the
crane is to serve Oi, j on machine k2 after completing
the predecessor operation Oi−1, j on machine k.

. Θ < Oi2, j2,Oi, j >: if Oi, j is the immediate successor
operation of Oi2, j2 being processed on the same machine.

. L: A very large number.

Parameters

. θ j : The operation number of job j, j=1,2,,n.

. T̃i, j,k : The fuzzy processing time of Oi, j on machine k,
represented by a type-2 fuzzy value: T̃i, j,k =(p1, p2, p3,
p4, p5).

. E pk : Processing power of machine k.
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Decision variables:

. yi1, j1,i2, j2: A binary value set to 1 if < Oi2, j2,Oi, j >∈ Ψ
; otherwise is set to 0.

. xi, j,k : A binary value set to 1 when Oi, j is assigned to
machine k; otherwise xi, j,k is set to 0..

. zi−1, j,k,i, j,k2: A binary value set to 1 if
< Oi−1, j,Oi, j, k, k2 >∈ Φ ; otherwise zi−1, j,k,i, j,k2
is set to 0.

. ui2, j2,i, j : A binary value set to 1 if < Oi2, j2,Oi, j >∈ Θ ;
otherwise ui2, j2,i, j is set to 0.

C. Energy consumption of machine processing

Let Emp(Oi, j) represent the machine processing energy
consumption for operation Oi, j and let Emp represent the total
machine processing energy consumption. The two variables
can be calculated as follows:

Emp(Oi, j) =
m∑
k=1

E pk · T̃i, j,k · xi, j,k (10)

Emp =
∑n

j=1

∑θ j

i=1
Emp(Oi, j) (11)

D. Energy consumption during crane transportation

Similar to [21], the following energy consumptions are
considered:

Eno =

J∑
j=1

J∑
j1=1

θ j∑
i=2

θ j∑
i1=1

Eno

(
Oi, j

)
· yi1, j1,i, j (12)

Ens =

J∑
j=1

J∑
j1=1

θ j∑
i=2

θ j∑
i1=1

Ens

(
Oi, j

)
· yi1, j1,i, j (13)

Els =
∑J

j=1

∑θ j

i=1

∑K

k=1
Els(Oi, j) · xi, j,k (14)

Elo =
∑J

j=1

∑θ j

i=1

∑K

k=1
Elo(Oi, j) · xi, j,k (15)

Considering the four types of transportation energy con-
sumption, the total energy consumption during the entire
transportation process can be calculated as follows:

Ect = Eno + Ens + Els + Elo (16)

E. The formulation of the fCFJSP

min f = ω1 · f1 + ω2 · f2 (17)

min f1 = max(T̃cθ j, j), j = 1, 2, ..., n (18)
min f2 = Emp + Ect (19)

T̃ si, j ≥ T̃ci−1, j (20)

(T̃ si, j − T̃ci2, j2) · ui2, j2,i, j ≥ 0 (21)∑K

k=1
xi, j,k = 1 (22)

Pi = K1 (23)

T̃ci−1, j + T̃ls(Oi, j) − T̃ si2, j2 ≥ 0 (24)
Pnl(Oi, j)=Pl(Oi, j)=Pl(Oi1, j1),
∀ < Oi1, j1,Oi, j >∈ Ψ,
∧ xi, j,k = xi−1, j,k = 1 (25)

xi, j,k =
{

1, i f Oi, j is processed on machine k
0, otherwise (26)

yi1, j1,i2, j2 =

{
1, i f < Oi1, j1,Oi2, j2 >∈ Ψ
0 (27)

zi−1, j,k,i, j,k2 =

{
1, i f < Oi−1, j,k,Oi, j,k2 >∈ Φ
0, otherwise (28)

ui2, j2,i, j =
{

1, i f < Oi2, j2,Oi, j >∈ Θ
0, otherwise (29)

Constraints (16)-(18) describe the total objective of this
problem. Constraint (19) ensures the precedence relation of
consecutive operations of the same job. The processed relation
of two immediate jobs on the same machine is ensured
by constraint (20), while constraint (21) ensures that each
operation can select only one machine. Constraint (22) sets the
initial position for the crane, and constraint (23) specifies that
the transportation of the successor operation must wait for the
following machine to become idle. Constraint (24) guarantees
that no crane transportation is required if no machine has
changed between consecutive operations of the same job. The
range of variables is described in constraints (25)-(28).

F. Illustrative example

To illustrate the problem, Fig. 3 presents a Gantt chart of
an example of the considered problem. There are six jobs
to be processed on five machines, and one crane device to
complete the transportation tasks between any two machines.
The IT2FS starting and completion times for each job are
represented by two nonsymmetrical triangular interval IT2FS
values, and a pair of values representing the job and operation
numbers. For example, the last operation being processed on
M5 is O18,6, which is represented by two nonsymmetrical
triangular interval IT2FS values. The IT2FS value under the
line denotes the fuzzy starting time for O18,6, and the IT2FS
value above the line tells the fuzzy completion time for O18,6.
Each IT2FS value is represented by two overlapped triangles.
The interval spaces between the two triangles filled with purple
colors represent the area between the UMF and LMF for
the operation O18,6. Moreover, the two pairs of five values
represented the interval type-2 fuzzy values for the starting
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Fig. 3. A Gantt chart for an example problem.

and completion times. For example, the value (801, 886, 989,
1077, 1188) means the IT2FS value for the fuzzy starting
time for O18,6, and the value (823, 911, 1017, 1108, 1222)
is for the fuzzy completion time for O18,6. After computing
the IT2FS values of the completion time for each operation,
the maximum completion time for the system will be obtained,
and the objective function can be collected.

IV. PROPOSED ALGORITHM

A. Framework of IAIS

In this section, we describe the detailed components of the
proposed IAIS algorithm. We present step-by-step descriptions
of the solution representation and decoding mechanism, the
affinity calculation, initialization strategy, selection and clone
method, mutation operators, local search heuristics and the
population diversity steps. The framework of the IAIS is
described in Algorithm 2.

B. Solution representation

Similar to other studies, in this study, we also use a two-
dimensional vector to represent each antibody or solution. The

1 2 3 1 3 2 2 1 3

3 2 1 3 2 3 3 2 1

scheduling vector

routing vector

Fig. 4. Example of solution representation.

routing vector is used to indicate the assigned machine for
each operation, and the scheduling vector is used to report the
processing sequence for all operations. The two vectors are
set with the same length, which equals the total number of
operations.

For example, Fig. 4 provides a solution representation,
in which the operations given in the scheduling vector are
O11,O12,O13,O21,O23,O22,O32,O31,O33.

The routing vector indicates that the first position is for
operation O11, where machine M3 is assigned to process it.
Then, machine M2 is selected from processing O12, and so
on. The last position in the routing vector is for O33, which
is processed on machine M1.
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Algorithm 2: The Framework of IAIS
Input: input parameters
Output: the best solution found so far.

1 Let Psize be the population size, and
Psize=nc(nc + 1)/2 where nc is the clone number;

2 Initialize Psize antibodies (c.f. subsection IV-D.);
3 Calculate the objective value of each antibody in the

initial population (c.f. subsection IV-C.);
4 Choose nc antibodies and clone them according to

their affinities (c.f. subsection IV-E.);
5 Perform the mutation operator on the cloned antibodies

to obtain new antibodies (c.f. subsection IV-F.);
6 Perform the population diversity to suppress the

population by eliminating the antibodies with high
crowding values (c.f. subsection IV-G.);

7 Perform the SA-based exploration search (c.f.
subsection IV-H.);

8 Record the best antibody;
9 if the stooping criterion is satisfied then

10 end the algorithm;
11 else
12 go to step 2.
13 end

C. IT2FS-based affinity calculation heuristic

Given a scheduling vector
∏

:= (π1, π2, ..., πn) consisting
of n operations and a routing vector ℜ := (γ1, γ2, ..., γn)
consisting of n operations, the decoding method involves
first determining the operation number for each position
πi, i = 1, 2, ..., n in the routing vector. Then, for the operation
number, the machine number should be selected at position
γi, i = 1, 2, ..., n in ℜ. Considering the IT2FS processing time,
the IT2FS starting time for each assigned operation should be
set with respect to the scheduling vector.

The decoding steps are as follows: (1) determine the IT2FS
starting time for each operation considering both the comple-
tion time of the previous operation and the machine idle time,
and consider the crane transportation time; and (2) calculate
the objective values, including the IT2FS makespan, and the
energy consumptions.

Algorithm 3 presents the detailed steps of the affinity
calculation heuristic.

D. Initialization strategy

To obtain an initial population with high quality and diver-
sity, four types of initialization strategies are embedded in the
proposed IAIS algorithm as follows:

IS1: Random initialization rule. This rule is simple and aims
to generate a solution with high diversity. For the scheduling
vector: (1) initialize an empty scheduling vector, and add the
number for each job j nj times; and (2) randomly rearrange
the sequence for all numbers in the scheduling vector. For the
routing vector: (1) initialize an empty routing vector; and (2)
select each operation Oi, j in the scheduling vector, randomly
select one available machine Mi, j for Oi, j , and store Mi, j in
the routing vector.

Algorithm 3: IT2FS-based affinity calculation heuris-
tic
Input: two dimensional vectors for a solution
Output: the IT2FS starting time for each operation.

1 Initialize a machine idle time vector, named Midle,
with the initial values 0 for each machine;

2 for each operation Oi, j in the scheduling vector do
3 Find the assigned machine k for processing Oi, j in

the routing vector;
4 Let T̃ci−1, j be the IT2FS completion time of

Oi−1, j , if i=1, then set T̃ci−1, j =0;
5 Let T̃k be the idle time for the machine k ;
6 Let T̃ si, j = m̃ax{T̃ci−1, j, T̃k}, where m̃ax{} means

the maximum IT2FS values by using the IT2FS
ranking operator discussed in Section II-B;

7 Let T̃ci, j= T̃ si, j+T̃i, j,k , where the addition operator
can be found in Section II-B;

8 Set the machine idle time T̃k=T̃ci, j .
9 end

IS2: Global minimum workload rule. For each operation,
select an available machine with the minimum workload. If
more than one machine has the same workload, then select the
machine with the minimum processing time for the operation.

IS3: Global minimum energy consumption rule. For each
operation, select an available machine with the minimum
energy consumptions. If more than one machine has the
same energy consumptions, then select the machine with the
minimum processing time for the operation.

IS4:Local minimum processing time rule. For each opera-
tion, select an available machine with the minimum processing
time.

It is obvious that the computational complexity of the four
initialization strategy is O(nm).

Based on these four initialization strategies, a simple ini-
tialization procedure is as follows:

Step 1. Apply the four problem-specific initialization rules
(i.e., IS2, IS3, and IS4) to generate four solutions.

Step 2. While the initial population size is less than Psize,
generate an initial solution by performing the IS1 strategy.

E. Selection and cloning

In the proposed algorithm, similar to [55], rather than select
the entire population to perform mutation, nc antibodies are
selected to generate cloned antibodies. To maintain meaningful
information in the current population, a native way is to
increase the number of clone antibodies for a solution with
higher affinity. Detailed steps to select and clone are as
follows:

Step 1. Sequence the entire population according to affinity,
that is, an antibody with higher affinity is selected for cloning.

Step 2. The clone number of each nc selected antibody is
calculated as (nc − k + 1), where k denotes the antibody with
the k th highest affinity function.

Step 3. All nc(nc + 1)/2 antibodies construct a set named
CP.
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F. Mutation

For each cloning antibody, the exploitation process should
be applied to explore its neighboring search space. A common
way is to use either a swap mutation or insertion mutation. In
this subsection, by considering the problem features and objec-
tive information, several local search operators are developed.

1) Mutation for routing vector:
LS1: Local search for the busiest machine: (1) For a solution

X , compute the workload for all machines. To compute the
workload for each operation Oi, j on machine k, first, let S̃i
be the IT2FS starting time and Ẽi be the completion time
of Oi, j . Let Pi = Ẽi - S̃i and C̃i be the centroid of Pi .
Then, the workload of Oi, j on machine k is set to C̃i . (2)
Select machine M with the maximum workload; (3) Randomly
select an operation Oi, j on machine M . If Oi, j has more than
one candidate machine, then randomly replace it with another
machine; and (4) Evaluate the newly-generated neighboring
solution and replace the current solution.

LS2: Local search for a machine with the highest energy
consumption: (1) For a solution X , compute the energy
consumption for all machines; (2) Select machine M with
the maximum energy consumption; (3) Randomly select an
operation Oi, j on M . If Oi, j has more than one candidate
machine, then randomly replace it with another machine; and
(4) Evaluate the newly-generated neighboring solution and
replace the current solution.

LS3: Local search for a random operation: (1) For a solution
X , randomly select one operation Oi, j on the scheduling
vector; (2) If Oi, j has more than one candidate machine, then
randomly replace it with another machine; and (3) Evaluate the
newly-generated neighboring solution and replace the current
solution if the latter is better.

It should be noted that, the main computational burden of
the three mutation operators LS1 to LS3 consumed during
the replacement of another candidate machine for the selected
operations. It is obvious that the computational complexity of
the three mutation operators for routing vector is O(n2).

2) Mutation for scheduling vector:
For the scheduling vector, we present the following two

types of mutation operators.
LS5: Two-point swap (TPS) operator. The TPS operator

generates a neighboring solution by swapping two selected
jobs. Fig. 5 (a) illustrates the procedure of the TPS operator.

LS6: Two-point insertion (TPI) operator. The TPI operator
generates a neighboring solution by inserting one job before
the position of another selected job. Fig. 5 (b) illustrates the
procedure of the TPI operator.

It should be noted that, the main computational burden of
the two mutation operators LS5 to LS6 consumed during the
computation of the objective functions. It is obvious that the
computational complexity of the two mutation operators for
scheduling vector is O(nm).

After executing the mutation operators randomly, each
cloning antibody generates a neighboring antibody. These
neighboring antibodies construct a set named NP.

G. Population diversity

To maintain the diversity of the population, the population is
reduced by eliminating antibodies with high crowding values.
The crowding value is defined as a value that represents
the crowding degree among neighboring antibodies. Given
a population of antibodies P := {X1,X2,...,Xn}, the crowding
value of Xi is calculated as follows:

Xi =


1 − ( fi+1− fi−1)

( fmax− fmin), i = 2, 3, ..., n − 1.
1 − ( f2− f1)

( fmax− fmin), i = 1.
1 − ( fn− fn−1)

( fmax− fmin), i = n.

(30)

where fmax and fmin are the maximum and minimum affin-
ity values among all antibodies, respectively. For example,
given three solutions X1 = (∏1,ℜ1), X2 = (∏2,ℜ2), and
X3 = (∏3,ℜ3), these solutions are sorted according to the
non-increasing order of their affinity. The crowding value of
X1 is calculated by ( f2 − f1)/( fmax − fmin), where f1 and f2
represent the affinity values of X1 and X2. Then, the crowding
value of X2 is calculated by ( f3 − f1)/( fmax − fmin), and that
of X3 is calculated by ( f3 − f2)/( fmax − fmin).

Based on the crowding degree values, the population diver-
sity mechanism is presented in Algorithm 4.

Algorithm 4: Population diversity procedure
Input: the current population
Output: the population after suppression.

1 Merge all of the antibodies in NP and CP, and the
number of the antibodies is nc + nc(nc + 1)/2;

2 Sequence all the nc + nc(nc + 1)/2 antibodies according
to the non-increasing order of affinity function values
of them, and store them in a set named MP;

3 Sort all the antibodies in MP according to the
non-increasing order of their affinities;

4 Calculate the crowding degree value CDi for the
antibody Xi;

5 Eliminate the antibodies with the crowding degree
values bigger than a given threshold value CRmax ;

6 After the suppression process, let the size of the
current population is Psc . if Psc<Psize then perform
the following step Psize-Psc times;

7 To apply the mutation operator for the best antibody
found so far, and store the neighboring solution into
the current population.

From Algorithm 4, we find that: (1) the computational
burden of Steps 2 and 3 is logPsize

2 ; (2) the computational
complexity of Steps 6 to 7 is O(n2m). Therefore, the compu-
tational complexity of Algorithm 4 is O(n2m).

H. SA-based exploration heuristic

In this study, we embed the SA-based acceptance method in
the proposed IAIS algorithm to enhance the exploration abil-
ities of the algorithm. The temperature for the SA algorithm

is set to
T ·∑m

k=1
∑n

j=1
∑θ j

i=1 Ti, j,k

n ·m·10 , where T is set as a parameter
for the proposed algorithm.

Authorized licensed use limited to: Shandong Normal University. Downloaded on September 17,2020 at 02:55:49 UTC from IEEE Xplore.  Restrictions apply. 



1063-6706 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2020.3016225, IEEE
Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS 9

3 0 1 2 1 2scheduling vector

1 2 4 6 2 5routing vector

before TPS

3 0 2 2 1 1

1 2 6 5 4 2

after TPS

1

2

4

6

5

job

operation > 
assigned machine

input

output
2

MS

scheduling vector

routing vector

(a) TPS operator

3 0 1 2 2 1

1 2 4 6 5 2

before TPI

3 0 2 1 2 1

1 2 6 4 5 2

after TPI

1

2

4

6

5

job

operation > 
assigned machine

input

output

MS

scheduling vector

routing vector

scheduling vector

routing vector

(b) TPI operator

Fig. 5. Mutation operators.

Detailed steps of the SA-based exploration heuristic are
provided in Algorithm 5. The computational complexity of
Algorithm 5 is O(n2m).

Algorithm 5: SA-based exploration heuristic
Input: the best solution found so far
Output: the best solution after applying the SA-based

exploration method
1 Let count = 1;
2 for count < n/4 do
3 Let ss be the best antibody found so far;
4 Peform the local search operator on ss to generate

a new antibody ss
′
;

5 Let ∆ =ss
′
-ss;

6 if ∆ < 0 then
7 Replace the best solution with ss

′
;

8 else
9 Let rr = e∆/Temperature ;

10 Let Acceptp = 1/rr;
11 Generate a random number r1 range in [0,1];
12 if r1 < Acceptp then
13 Replace the best solution with ss

′
;

14 end
15 end
16 end

V. EXPERIMENTAL RESULTS

In Section IV, the proposed algorithm has been described
in detail, where the IT2FS operators are used to schedule the
operations and compute the objectives (see details in Section
II and III). In this section, we present detailed comparisons
to evaluate the performance of the proposed IAIS algorithm
discussed in Section IV. The compared algorithms are coded
in C++ on an Intel Core i7 3.4-GHz PC with 16 GB mem-
ory. It should be noted that 30 independent runs for each
instance is commonly used to make fair comparisons in many
references[24]. Therefore, to verify the effectiveness and effi-
ciency of the proposed algorithm, after 30 independent runs,
the resulting best solutions were collected for performance
comparisons.

The compared algorithms include two types: (1) population-
based algorithms, including the genetic algorithm with glow-
worm swarm optimization (GA-GSO) algorithm (Liu et al.,
2019) [33], the discrete ABC (DABC) algorithm (Gao et al.,
2016) [24], the TPM algorithm (Lei et al., 2019) [17], and the
hCEA (Sun et al., 2019) [31]; and (2) local-search-based meth-
ods, including the ASA algorithm (CruzChávez et al., 2017)
[14]. All the above-listed algorithms are used to solve various
FJSPs. For example, the GA-GSO algorithm was developed to
solve FJSPs with crane transportation, which is also examined
in this study. DABC, TPM, and hCEA were designed for
Type-1 fuzzy FJSPs, and the two local search methods, MIG
and ASA, were used to solve classical FJSPs. Note that we
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were unable to find any algorithm for solving IT2FS FJSPs.
Therefore, we implemented all of the compared algorithms to
solve the considered problem, and their parameters were set
according to their respective literature. The relative percentage
increase (RPI) value was used as the performance measure,
which is calculated as follows:

RPI(C) = ( fc − fb)/ fb ∗ 100 (31)

where fb is the best result obtained by the seven algorithms
and fc is the best result for each instance obtained by a given
algorithm.

A. Experimental instances

Based on the realistic instances obtained from[33],
we randomly generated 30 different scales of instances,
where n =20, 30, 40, 50, 80, 100, and m = 6, 7,
8, 9, 10. In addition, the total number of operations
of each job was distributed uniformly in the interval
[m/2, m]. The instances can be found on the following
website: http://ischedulings.com/data/T2FJSP_instances.rar.
The results obtained by the proposed IAIS
algorithm can be found on the following website:
http://ischedulings.com/data/TFS_IAIS_results.rar.

B. Experimental parameters

Three parameters for the proposed algorithms included a
temperature-related parameter for the SA-based exploration
heuristic (T), the clone number (nc), and the crowding thresh-
old value for the population diversity (CRmax). The stop crite-
rion was set to CPU = 30×⌈n/50⌉s. The design of experiments
(DOE) approach was used to calibrate the parameters, and the
parameter levels were as follows:

. T=0.1, 0.3, 0.5, 0.8.

. nc=5, 10, 15, 20.

. CRmax= 0.5, 0.7, 0.8, 0.9.
To calibrate the parameters fairly, we randomly generated

another set of instances. The results were collected after 30
independent runs for each instance. Plots of the factor-level
trends with the selection of parameters T , nc , and CRmax are
shown in Fig. 6, where T = 0.5, nc = 10, and CRmax = 0.8
yielded a much better fitness value than the other values.

C. Efficiency of initialization heuristic

The initialization heuristic discussed in Section IV-D was
used to enhance the quality and diversity of the initial popu-
lation. To evaluate the initialization heuristic, we coded two
types of IAIS algorithms: IAIS-NI with a random initialization
heuristic and IAIS with all components discussed in Section
IV. All other components of the two compared algorithms were
set to the same values.

Table I presents the results of solving the given 30 instances
using the two compared algorithms. The first column displays
the instance name, while the second column displays the best
fitness value for each instance. The following two columns
describe the fitness values collected by IAIS-NI and IAIS, re-
spectively, while the RPI values obtained by the two compared
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Fig. 6. Factor-level trends of parameters .

algorithms are provided in the last two columns, respectively.
The two compared algorithms were performed with CPU =
30 × ⌈n/50⌉s for each instance.

The comparison results indicate that (1) IAIS obtained better
results for 30 instances; (2) from the RPI values listed in
the last two columns and the last row in the table, IAIS
obtained a significantly better result than IAIS-NI; and (3)
in summary, the proposed initialization heuristic was effective
for the considered problem.

Multifactor analysis of variance (ANOVA) was also used
to evaluate whether the comparison results were significant.
Fig. 7 (a) reveals that the resulting p-value was close to zero,
which reveals that the difference was significant after applying
the proposed initialization heuristic.

D. Efficiency of mutation heuristics

The mutation heuristic discussed in Section IV-F is an-
other contribution of the proposed algorithm. To evaluate its
performance, we also coded two types of IAIS algorithms:
IAIS-NM with a random mutation heuristic and IAIS with all
components discussed in Section IV. All other components of
the two compared algorithms were identical. Table II provides
the results of solving the given 30 instances using the two
compared algorithms. The two compared algorithms were
performed with CPU = 30 × ⌈n/50⌉s for each instance.

It can be observed from the comparison result that: (1) the
total number of superior results obtained by IAIS was 29,
which is obviously better than that obtained by IAIS-NM; and
(2) from the RPI values listed in the last two columns, IAIS
obtained an average value of 0.01, which is significantly better
than the result obtained by IAIS-NM.

Fig. 7 (b) provides ANOVA comparisons of the two meth-
ods. The figure indicates that there are significant differences
between the compared methods and that the proposed mutation
heuristic enhances the performance of the proposed algorithm.

E. Effectiveness of population diversity heuristics

To evaluate the performance of the population diversity
heuristic discussed in Section IV-D, we coded two types of
IAIS algorithms: IAIS-ND without the population diversity
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TABLE I
COMPARISON RESULTS BETWEEN IAIS-NI AND IAIS.

Instance best Fitness RPI
IAIS-NI IAIS IAIS-NI IAIS

j20m6 453.493 465.347 453.493 2.61 0.00*
j20m7 406.93 434.88 406.93 6.87 0.00*
j20m8 553.54 600.97 553.54 8.57 0.00*
j20m9 556.04 572.86 556.04 3.02 0.00*

j20m10 646.88 680.96 646.88 5.27 0.00*
j30m6 645.94 680.95 645.94 5.42 0.00*
j30m7 672.03 692.12 672.03 2.99 0.00*
j30m8 814.91 840.96 814.91 3.20 0.00*
j30m9 829.58 859.26 829.58 3.58 0.00*

j30m10 971.25 1006.49 971.25 3.63 0.00*
j40m6 908.22 981.51 908.22 8.07 0.00*
j40m7 863.35 906.07 863.35 4.95 0.00*
j40m8 1184.42 1235.31 1184.42 4.30 0.00*
j40m9 978.75 1034.98 978.75 5.74 0.00*

j40m10 1158.46 1250.43 1158.46 7.94 0.00*
j50m6 1115.64 1165.69 1115.64 4.49 0.00*
j50m7 1077.8 1141.39 1077.8 5.90 0.00*
j50m8 1376.33 1446.57 1376.33 5.10 0.00*
j50m9 1378.36 1441.56 1378.36 4.59 0.00*

j50m10 1779.67 1875.26 1779.67 5.37 0.00*
j80m6 1868.2 2010.21 1868.2 7.60 0.00*
j80m7 1839.61 1897.68 1839.61 3.16 0.00*
j80m8 2112.36 2299.03 2112.36 8.84 0.00*
j80m9 2078.4 2279.86 2078.4 9.69 0.00*

j80m10 2436.08 2629.47 2436.08 7.94 0.00*
j100m6 2420.02 2578.77 2420.02 6.56 0.00*
j100m7 2010.49 2133.46 2010.49 6.12 0.00*
j100m8 2766.95 2991.43 2766.95 8.11 0.00*
j100m9 2688.4 2923.97 2688.4 8.76 0.00*
j100m10 3538.56 3843.82 3538.56 8.63 0.00*

mean 1404.36 1496.71 1404.36 5.90 0.00*
-*means the better values

heuristic and IAIS with all components discussed in Section
IV.

Table III reveals that the proposed algorithm with the popu-
lation diversity heuristic was efficient, and the results presented
in Fig. 7 (c) demonstrate that the IAIS with the population
diversity heuristic exhibited significantly better performance.
It can be thus concluded that the proposed population diversity
heuristic enhances the search ability of the proposed algorithm.

F. Effectiveness of SA-based exploration heuristics

In this subsection, we present our evaluation of the SA-
based exploration heuristic discussed in Section IV-H. We
coded two types of IAIS algorithms: IAIS-NS without the
SA-based exploration heuristic and IAIS with all components
discussed in section IV. The results provided in Table IV and
Fig. 7 (d) demonstrate that the two compared methods are
significantly different, which further support the effectiveness
of the proposed SA-based exploration heuristic.

G. Test on the four manufacturing instances

This section investigates the extension version of the four
optimization problems collected from the Ref [33]. The four
typical complex production problems are collected from a
large cement equipment manufacturing company located in
Tianjin, China. The company mainly produces large complex
cement equipment, including rotary kilns, vertical mills, roll
squeezers. In the extension version of problems, the IT2FS

TABLE II
RESULTS OF COMPARISON BETWEEN IAIS-NM AND IAIS.

Instance best Fitness RPI
IAIS-NM IAIS IAIS-NM IAIS

j20m6 453.49 454.32 453.49 0.18 0.00*
j20m7 406.93 411.22 406.93 1.05 0.00*
j20m8 553.54 578.93 553.54 4.59 0.00*
j20m9 556.04 568.81 556.04 2.30 0.00*
j20m10 646.88 673.94 646.88 4.18 0.00*
j30m6 643.05 643.05 645.94 0.00* 0.45
j30m7 672.03 678.01 672.03 0.89 0.00*
j30m8 814.91 846.06 814.91 3.82 0.00*
j30m9 829.58 861.84 829.58 3.89 0.00*
j30m10 971.25 1056.27 971.25 8.75 0.00*
j40m6 908.22 956.86 908.22 5.36 0.00*
j40m7 863.35 870.48 863.35 0.83 0.00*
j40m8 1184.42 1271.62 1184.42 7.36 0.00*
j40m9 978.75 1021.32 978.75 4.35 0.00*
j40m10 1158.46 1313.49 1158.46 13.38 0.00*
j50m6 1115.64 1145.26 1115.64 2.65 0.00*
j50m7 1077.8 1113.39 1077.8 3.30 0.00*
j50m8 1376.33 1519.87 1376.33 10.43 0.00*
j50m9 1378.36 1482.74 1378.36 7.57 0.00*
j50m10 1779.67 2014.04 1779.67 13.17 0.00*
j80m6 1868.2 1921.44 1868.2 2.85 0.00*
j80m7 1839.61 1910.42 1839.61 3.85 0.00*
j80m8 2112.36 2385.39 2112.36 12.93 0.00*
j80m9 2078.4 2310.36 2078.4 11.16 0.00*
j80m10 2436.08 2768.17 2436.08 13.63 0.00*
j100m6 2420.02 2563.19 2420.02 5.92 0.00*
j100m7 2010.49 2083.48 2010.49 3.63 0.00*
j100m8 2766.95 3045.31 2766.95 10.06 0.00*
j100m9 2688.4 3047.42 2688.4 13.35 0.00*

j100m10 3538.56 4169.73 3538.56 17.84 0.00*
mean 1404.26 1522.88 1404.36 6.44 0.01*

-*means the better values

TABLE III
RESULTS OF COMPARISON BETWEEN IAIS-ND AND IAIS.

Instance best Fitness RPI
IAIS-ND IAIS IAIS-ND IAIS

j20m6 452.31 452.31 453.49 0.00* 0.26
j20m7 406.93 408.58 406.93 0.41 0.00*
j20m8 553.54 571.82 553.54 3.30 0.00*
j20m9 549.55 549.55 556.04 0.00* 1.18
j20m10 638.69 638.69 646.88 0.00* 1.28
j30m6 645.94 646.75 645.94 0.13 0.00*
j30m7 650.56 650.56 672.03 0.00* 3.30
j30m8 812.57 812.57 814.91 0.00* 0.29
j30m9 829.58 831.07 829.58 0.18 0.00*
j30m10 971.25 973.93 971.25 0.28 0.00*
j40m6 908.22 929.16 908.22 2.31 0.00*
j40m7 857.32 857.32 863.35 0.00* 0.70
j40m8 1174.2 1174.2 1184.42 0.00* 0.87
j40m9 978.75 984.63 978.75 0.60 0.00*
j40m10 1158.46 1188.87 1158.46 2.63 0.00*
j50m6 1110.5 1110.5 1115.64 0.00* 0.46
j50m7 1067.25 1067.25 1077.8 0.00* 0.99
j50m8 1376.33 1408.96 1376.33 2.37 0.00*
j50m9 1378.36 1380.00* 1378.36 0.12 0.00*
j50m10 1779.67 1919.3 1779.67 7.85 0.00*
j80m6 1868.2 1876.01 1868.2 0.42 0.00*
j80m7 1822.75 1822.75 1839.61 0.00* 0.92
j80m8 2112.36 2173.64 2112.36 2.90 0.00*
j80m9 2078.4 2145.67 2078.4 3.24 0.00*
j80m10 2436.08 2586.68 2436.08 6.18 0.00*
j100m6 2420.02 2423.9 2420.02 0.16 0.00*
j100m7 2010.49 2025.04 2010.49 0.72 0.00*
j100m8 2766.95 2877.55 2766.95 4.00 0.00*
j100m9 2688.4 2847.13 2688.4 5.90 0.00*

j100m10 3538.56 4074.39 3538.56 15.14 0.00*
mean 1401.41 1446.96 1404.36 1.96 0.34*

-*means the better values
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TABLE IV
RESULTS OF COMPARISON BETWEEN IAIS-NS AND IAIS.

Instance best Fitness RPI
IAIS-NS IAIS IAIS-NS IAIS

j20m6 453.49 459.96 453.49 1.43 0.00*
j20m7 406.93 413.53 406.93 1.62 0.00*
j20m8 553.54 589.53 553.54 6.50 0.00*
j20m9 556.04 562.82 556.04 1.22 0.00*
j20m10 646.88 654.3 646.88 1.15 0.00*
j30m6 641.54 641.54 645.94 0.00* 0.69
j30m7 660.76 660.76 672.03 0.00* 1.71
j30m8 791.36 791.36 814.91 0.00* 2.98
j30m9 825.38 825.38 829.58 0.00* 0.51
j30m10 971.25 975.49 971.25 0.44 0.00*
j40m6 908.22 939.05 908.22 3.39 0.00*
j40m7 858.49 858.49 863.35 0.00* 0.57
j40m8 1184.42 1186.43 1184.42 0.17 0.00*
j40m9 978.75 994.48 978.75 1.61 0.00*
j40m10 1158.46 1183.94 1158.46 2.20 0.00*
j50m6 1115.64 1119.22 1115.64 0.32 0.00*
j50m7 1077.8 1083.15 1077.8 0.50 0.00*
j50m8 1376.33 1396.11 1376.33 1.44 0.00*
j50m9 1378.36 1402.19 1378.36 1.73 0.00*
j50m10 1779.67 1815.08 1779.67 1.99 0.00*
j80m6 1868.2 1901.72 1868.2 1.79 0.00*
j80m7 1828.66 1828.66 1839.61 0.00* 0.60
j80m8 2112.36 2170.15 2112.36 2.74 0.00*
j80m9 2078.4 2116.36 2078.4 1.83 0.00*
j80m10 2436.08 2476.91 2436.08 1.68 0.00*
j100m6 2420.02 2426.53 2420.02 0.27 0.00*
j100m7 2010.49 2029.54 2010.49 0.95 0.00*
j100m8 2766.95 2823.54 2766.95 2.05 0.00*
j100m9 2688.4 2751.19 2688.4 2.34 0.00*

j100m10 3538.56 3639.02 3538.56 2.84 0.00*
mean 1402.38 1423.88 1404.36 1.41 0.23

-*means the better values

processing times collected from the realistic production system
are embedded. The four instances are given in the website
http://ischedulings.com/data/, where each line tells the IT2FS
processing time for each operation on each machine.

The GA-GSO in [33] is selected as the compared algorithm,
and the comparison results are collected in Table V. The first
column in the table reports the weight values, from 0.1 to
0.9. The second column gives the instance numbers, from 1
to 4. The next column lists the best values collected from
the two compared algorithms. The fitness values obtained by
IAIS and GA-GSO are reported in the following two columns,
respectively. Then, the last columns list the RPI values for the
two compared algorithms.

It can be concluded from the table that: (1) the proposed
IAIS algorithm obtained 26 better solutions out of the given
36 instances, which is obviously better than GA-GSO; and (2)
the average performance from the last line in the table shows
that IAIS is better than the compared algorithm. For example,
the average value obtained by IAIS is 0.17, which is about
0.28 times of the results collected by GA-GSO algorithm.

Fig. 7 (e) gives the ANOVA comparisons of the four
manufacturing instances considering IAIS and GA-GSO. It
also shows that the two compared methods are significantly
different and the proposed IAIS algorithm is better.

H. Comparison with other algorithms

To further evaluate the performance of the proposed IAIS al-
gorithm, we selected the following algorithms for comparison:

GA-GSO, ASA, DABC, TPM, and hCEA. For each compared
algorithm, the results obtained after 30 independently runs
are used to make detailed comparisons. The best value for
each instance is collected by the results after performing each
algorithm with CPU = 30 × ⌈n/50⌉s. Note that all the above
selected algorithms are not used to solve the considered IT2FS
FJSPs. Because there is no existing algorithms for solving the
considered problem, we coded the above selected algorithms to
solve IT2FS FJSPs. To make a fair comparison, we implement
all the compared algorithms to include all feasible components
from their respective literature, except the encoding, decoding,
and the IT2FS-based affinity calculation heuristic discussed in
Section IV.

The comparison results for the given 30 instances under
=0.1, 0.5, and 0.9, are given in Table V, VI, and VII, re-
spectively. In these three tables, the first column describes the
instance scales, and the second column gives the fitness values
obtained by the proposed IAIS algorithm. The following five
columns list the gap values for the other five compared
algorithms, i.e., GA-GSO, DABC, ASA, TPM, and hCEA,
respectively. The gap values are calculated as follows:

Gapcompare = (Fcompare − FI AIS)/FI AIS × 100 (32)

It can be concluded from three tables that: (1) considering
the situation where ω=0.1, compared with the other five
algorithms, the performance of IAIS increases by 5.07%,
8.32%, 0.68%, 4.58%, and 3.61%, respectively; (2) when =0.5,
compared with the other five algorithms, the performance
of IAIS increases by 6.44%, 10.76%, 1.00%, 5.72%, and
4.71%, respectively; (3) considering the situation where =0.9,
compared with the other five algorithms, the performance of
IGABC increases by 13.70%, 22.82%, 1.96%, 12.59%, and
9.89%, respectively; and (4) in a nutshell, the proposed IAIS
is efficient compared with the other five efficient algorithms,
especially for the relative large scale problems.

In addition, Fig. 8 shows the distribution of solutions with
different weights optimized by the six compared algorithms.
As observed from Fig. 8, IAIS shows competitive performance
considered makespan, energy consumption, and the weighted
fitness value.

Fig. 9 shows the comparison of the convergence curves
for different scale of problems, including "j20m6", "j20m10",
"j30m10", "j50m10", and "j100m10". It can be concluded
from the convergence curves that the proposed IAIS algorithm
shows better convergence abilities for various IT2FS FJSPs.
Fig.10 represents the Gantt chart for the best solution obtained
by IAIS for "j20m6", where each operation is represented by
two nonsymmetrical triangular interval T2FS values, i.e., the
type-2 fuzzy starting time and completion time. The type-2
fuzzy starting time is illustrated under the line of the machine,
while the type-2 fuzzy completion time is given upper the
line of the machine. For example, on machine M6, the first
operation is O3,1, which is represented two nonsymmetrical
triangular interval T2FS values. The Gantt chart also verify
the effectiveness of the proposed algorithm.
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TABLE V
COMPARISONS OF THE FOUR TYPICAL COMPLEX PROBLEMS WITH IT2FS PROCESSING TIMES.

w Instance Best fitness RPI
LAIS GA-GSO LAIS GA-GSO

0.10

1.00 507.06 507.23 507.06 0.03 0.00*
2.00 624.35 624.35 626.92 0.00* 0.41
3.00 696.15 696.89 696.15 0.11 0.00*
4.00 716.92 716.92 720.54 0.00* 0.50

0.20

1.00 464.21 464.40 464.21 0.04 0.00*
2.00 575.39 577.40 575.39 0.35 0.00*
3.00 640.08 640.08 644.76 0.00* 0.73
4.00 661.91 661.91 666.63 0.00* 0.71

0.30

1.00 419.38 419.38 419.38 0.00* 0.00*
2.00 523.26 523.26 523.77 0.00* 0.10
3.00 585.20 585.20 592.75 0.00* 1.29
4.00 601.31 601.31 604.66 0.00* 0.56

0.40

1.00 374.56 374.56 376.69 0.00* 0.57
2.00 466.23 466.23 470.16 0.00* 0.84
3.00 528.78 528.78 535.53 0.00* 1.28
4.00 539.36 545.42 539.36 1.12 0.00*

0.50

1.00 330.66 330.90 330.66 0.07 0.00*
2.00 416.29 416.29 417.51 0.00* 0.29
3.00 465.42 465.42 473.55 0.00* 1.75
4.00 476.64 476.64 479.02 0.00* 0.50

0.60

1.00 283.60 283.60 283.89 0.00* 0.10
2.00 357.18 357.18 358.76 0.00* 0.44
3.00 405.09 405.09 407.64 0.00* 0.63
4.00 413.31 413.31 414.65 0.00* 0.32

0.70

1.00 236.00 239.09 236.00 1.31 0.00*
2.00 298.05 298.05 300.81 0.00* 0.93
3.00 332.56 332.56 339.97 0.00* 2.23
4.00 341.31 341.31 344.94 0.00* 1.06

0.80

1.00 187.38 188.90 187.38 0.81 0.00*
2.00 235.76 235.76 236.91 0.00* 0.49
3.00 261.68 261.68 262.51 0.00* 0.32
4.00 267.42 267.42 272.30 0.00* 1.83

0.90

1.00 137.36 137.36 139.26 0.00* 1.39
2.00 170.31 170.31 172.38 0.00* 1.21
3.00 188.56 192.66 188.56 2.17 0.00*
4.00 197.64 197.64 200.09 0.00* 1.24

Mean 414.62 415.12 416.96 0.17* 0.60

VI. CONCLUSIONS

This study considered the crane transportation flexible job
shop scheduling problem, where the type-2 fuzzy processing
time constraint is studied. The objective is to minimize the
weighted sum of type-2 fuzzy makespan and the energy
consumption. All these interval type-2 fuzzy values are used
to schedule all operations according to the ranking operator
discussed in Section II-B, and then the maximum completion
time is obtained as one part of the objective functions.

To the best of my knowledge, this study is the first work to
consider this type of optimization problem. We firstly present
the mathematical model of the problem. Then, considering
the type-2 fuzzy values, a novel affinity calculation heuristic
is proposed. An efficient initialization heuristic with four
different rules are embedded to generate an initial population
with quality and diversity. Six types of mutation methods
are presented to perform search tasks in different searching
spaces. Moreover, a novel population diversity method is
conducted to erase solutions with crowding degree values.
Finally, the SA-based exploration heuristic enhances the global
search abilities of the proposed algorithm. The proposed IAIS
algorithm is used to generate a feasible and optimal solution
for the considered problem, while considering the processing
time as a IT2FS value rather than a deterministic value or a

TFN value. Therefore, the proposed algorithm considering the
IT2FS values can be adapt to solving the complex flexible job
shop scheduling problem under high level of uncertainty.

In our future work, we will consider following tasks:
(1) apply the IT2FS FJSPs in different types of realistic
applications, and to consider other realistic constraints, such
as operation related setup time and distributed processing
features; (2) combine with other efficient heuristics, such as
species driven methods and big data driven methods, and thus
enhance the performance of the proposed algorithm; (3) embed
the multi-objective optimization methods, such as Pareto-based
algorithms, multi-objective evolutionary algorithm based on
decomposition (MOEA/D), and therefore develop an efficient
multi-objective algorithm for the IT2FS FJSPs; and (4) con-
sider other types of IT2FS operators in the proposed algorithm,
such as IT2FS addition operator and IT2FS ranking operator,
and therefore, the proposed algorithm can adapt to other types
of applications.
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TABLE VI
RESULTS OF COMPARISON OF SIX ALGORITHMS (ω=0.1).

Inst IAIS Gap
GA-GSO DABC ASA TPM hCEA

j20m6 1791.51 2.25 1.95 -0.17 1.40 1.66
j20m7 1674.55 4.13 3.05 2.48 3.62 2.40
j20m8 2406.09 4.74 5.50 1.92 3.98 3.78
j20m9 2511.51 2.85 5.93 -0.07 4.65 3.15
j20m10 2823.41 6.43 7.36 0.82 7.27 5.58
j30m6 2422.84 2.30 3.60 0.75 2.53 2.30
j30m7 2743.26 1.29 3.16 -0.73 1.71 0.16
j30m8 3428.94 3.62 6.08 0.42 3.08 3.00
j30m9 3686.22 3.83 5.81 -0.74 3.85 3.35
j30m10 4243.04 8.05 10.66 0.44 7.06 5.07
j40m6 3566.96 3.12 4.84 -1.25 2.71 2.38
j40m7 3581.58 4.26 6.23 0.75 3.60 2.12
j40m8 5099.02 4.73 9.66 -0.22 4.46 3.64
j40m9 4300.79 5.70 8.45 -0.42 4.95 3.42
j40m10 5130.61 7.06 9.87 0.93 6.64 5.41
j50m6 4294.95 4.51 5.89 1.10 3.13 2.89
j50m7 4389.91 3.63 6.50 0.11 2.09 1.42
j50m8 5839.98 6.54 8.83 0.81 6.00 4.17
j50m9 5981.52 6.97 9.62 1.00 4.46 4.95
j50m10 7576.99 10.32 14.72 1.79 9.38 8.36
j80m6 7327.82 2.99 8.34 0.10 3.31 2.61
j80m7 7593.14 3.37 7.43 0.48 3.32 1.39
j80m8 9136.47 5.57 10.68 1.02 4.34 4.50
j80m9 8822.86 6.41 14.03 0.56 5.83 3.40
j80m10 10292.10 7.35 11.90 0.78 6.74 5.67
j100m6 9730.68 3.45 8.56 0.90 2.77 2.63
j100m7 8361.90 3.80 9.38 0.32 2.79 2.07
j100m8 11310.00 6.51 12.13 1.00 5.41 4.34
j100m9 10998.00 6.65 13.35 2.34 7.17 5.45

j100m10 13970.50 9.73 16.09 3.30 9.07 6.94
mean 5834.57 5.07 8.32 0.68 4.58 3.61

TABLE VII
RESULTS OF COMPARISON OF SIX ALGORITHMS (ω=0.5).

Inst IAIS Gap
GA-GSO DABC ASA TPM hCEA

j20m6 1147.21 2.15 2.97 0.09 3.20 1.83
j20m7 1080.39 3.46 3.69 -0.13 3.11 2.26
j20m8 1550.84 4.30 8.00 1.77 4.52 5.36
j20m9 1596.00 4.47 5.77 -0.05 3.99 4.37

j20m10 1789.42 7.11 9.85 0.48 9.31 7.24
j30m6 1547.01 6.64 7.92 3.81 4.34 6.20
j30m7 1744.75 4.20 5.43 0.88 2.81 3.40
j30m8 2167.98 6.69 8.67 0.04 5.99 5.32
j30m9 2296.90 7.96 10.01 0.25 4.48 3.10

j30m10 2674.48 9.76 13.23 1.10 9.44 8.15
j40m6 2310.11 4.40 5.69 0.24 2.49 2.56
j40m7 2266.90 5.03 8.28 1.24 4.89 3.54
j40m8 3225.54 6.61 10.76 -0.09 5.40 4.05
j40m9 2701.55 7.90 12.81 1.19 7.03 5.90

j40m10 3236.92 7.31 10.57 0.40 6.92 4.97
j50m6 2794.49 2.79 6.81 -0.65 2.26 2.79
j50m7 2776.94 3.90 9.53 0.45 6.24 2.30
j50m8 3672.63 7.52 12.97 2.23 8.16 5.50
j50m9 3714.25 9.66 14.16 2.30 7.61 7.40

j50m10 4753.49 14.41 20.64 2.81 11.75 9.70
j80m6 4717.78 3.41 9.71 0.76 3.57 2.30
j80m7 4807.19 2.56 7.96 0.83 3.83 2.22
j80m8 5774.17 6.69 13.60 0.14 5.08 4.99
j80m9 5596.16 8.69 18.05 0.18 7.52 5.59

j80m10 6499.63 9.75 17.09 1.38 8.24 7.09
j100m6 6228.39 3.96 8.98 1.24 3.72 2.06
j100m7 5307.45 4.92 9.95 0.78 3.73 2.07
j100m8 7184.37 7.82 15.89 1.94 6.75 6.32
j100m9 7039.44 8.01 14.93 1.53 7.11 5.38

j100m10 9046.69 11.17 18.98 2.96 8.25 7.41
mean 3708.30 6.44 10.76 1.00 5.72 4.71
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(e) ANOVA comparisons of the four manufacturing instances

Fig. 7. ANOVA results for comparison.
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Fig. 8. Distribution of solutions with different weights.

TABLE VIII
RESULTS OF COMPARISON OF SIX ALGORITHMS (ω=0.9).

Inst IAIS Gap
GA-GSO DABC ASA TPM hCEA

j20m6 461.32 2.13 3.97 -0.21 6.47 4.96
j20m7 414.30 3.44 9.86 1.19 8.34 6.24
j20m8 600.67 12.48 12.95 -2.88 8.86 5.99
j20m9 558.48 16.79 14.61 1.43 15.65 15.48

j20m10 665.17 22.19 20.21 0.08 18.60 16.80
j30m6 653.78 6.34 7.62 -0.32 5.77 4.18
j30m7 670.77 7.99 10.28 -0.78 9.44 6.02
j30m8 821.44 13.44 18.41 1.39 12.63 8.56
j30m9 835.71 18.31 21.78 0.57 16.52 14.72

j30m10 988.17 17.67 29.20 2.39 20.67 15.67
j40m6 943.94 7.89 9.63 1.03 4.75 5.74
j40m7 848.86 10.61 18.13 3.59 9.94 11.32
j40m8 1195.59 14.04 22.94 2.49 13.30 8.58
j40m9 989.01 15.50 30.45 1.48 16.85 12.99

j40m10 1187.33 16.30 27.65 2.74 17.27 13.66
j50m6 1129.48 7.44 10.86 0.68 5.12 5.85
j50m7 1080.80 11.41 16.48 1.49 9.16 7.79
j50m8 1410.89 16.11 27.35 0.72 14.71 11.93
j50m9 1396.87 19.99 29.22 1.99 18.06 13.89

j50m10 1790.63 29.60 43.75 2.74 24.87 21.83
j80m6 1867.50 9.56 17.10 3.56 6.58 5.55
j80m7 1837.52 7.24 17.22 0.14 5.79 5.96
j80m8 2106.11 17.20 32.58 4.89 14.25 10.70
j80m9 2101.24 18.59 38.40 5.48 15.53 12.29

j80m10 2446.29 19.03 36.23 3.57 18.13 15.93
j100m6 2416.05 8.34 20.83 1.63 7.85 7.36
j100m7 2011.03 10.55 23.48 4.01 7.77 6.46
j100m8 2770.80 16.33 32.65 3.60 14.07 7.32
j100m9 2705.95 16.04 33.92 4.82 15.34 6.96

j100m10 3584.08 18.55 46.80 5.39 15.30 5.98
mean 1416.33 13.70 22.82 1.96 12.59 9.89
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Fig. 9. Comparisons of the convergence abilities.
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Fig. 10. Gantt chart for the best solution for "j20m6".
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