Swarm and Evolutionary Computation 52 (2020) 100600

-

ELSEVIER

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Efficient multi-objective algorithm for the lot-streaming hybrid flowshop]

with variable sub-lots

Check for
updates

Jun-qing Li*™", Xin-rui Tao?, Bao-xian Jia?, Yu-yan Han? Chuang Liu® Peng Duan?

Zhi-xin Zheng®, Hong-yan Sang*

2 College of Computer Science, Liaocheng University, Liaocheng, 252059, PR China

Y School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China

ARTICLE INFO ABSTRACT

Keywords:

Hybrid flowshop
Lot-streaming scheduling
Multi-objective optimization
Variable sub-lots

Recent years, the multi-objective evolutionary algorithm based on decomposition (MOEA/D) has been researched
and applied for numerous optimization problems. In this study, we propose an improved version of MOEA/D with
problem-specific heuristics, named PH-MOEAD, to solve the hybrid flowshop scheduling (HFS) lot-streaming
problems, where the variable sub-lots constraint is considered to minimize four objectives, i.e., the penalty
caused by the average sojourn time, the energy consumption in the last stage, as well as the earliness and the
tardiness values. For solving this complex scheduling problem, each solution is coded by a two-vector-based
solution representation, i.e., a sub-lot vector and a scheduling vector. Then, a novel mutation heuristic consid-
ering the permutations in the sub-lots is proposed, which can improve the exploitation abilities. Next, a problem-
specific crossover heuristic is developed, which considered solutions with different sub-lot size, and therefore can
make a solution feasible and enhance the exploration abilities of the algorithm as well. Moreover, several
problem-specific lemmas are proposed and a right-shift heuristic based on them is subsequently developed, which
can further improve the performance of the algorithm. Lastly, a population initialization mechanism is embedded
that can assign a fit reference vector for each solution. Through comprehensive computational comparisons and
statistical analysis, the highly effective performance of the proposed algorithm is favorably compared against
several presented algorithms, both in solution quality and population diversity.

1. Introduction

In modern industrial production system, the scheduling problem has
been widely applied and investigated [1-15], such as the hybrid flow
shop scheduling (HFS) [1], parallel machine scheduling [2], flowshop
scheduling [3-5], and flexible job shop scheduling problem [6]. The HFS
is one of the typical scheduling problems, which is commonly considered
as an NP-hard problem [1]. In HFS, there are commonly multiple stages,
each stage contains parallel processing devices (which can be considered
as a parallel machine scheduling problem), and each job should flow
through each of the above stages according to the same sequence (which
can be seen as a flowshop scheduling problem). In each stage, each job
should select exactly one machine. Therefore, the performance of the
system is mainly determined by the performance of each job in each
stage. In recent years, how to schedule the jobs in the HFS system has
gained more and more research focus. To solve a similar realistic prob-
lem, Pan et al. investigated a multi-objective hot-rolling scheduling

problem in the compact strip production [7], and the distributed per-
mutation flowshop scheduling problems [8,9]. Li et al. developed a
hybrid fruit fly optimization algorithm (FOA) to solve the rescheduling
problem in SCC systems [10]. Further, Yu et al. developed a heuristic to
solve the SCC problem considering a job start-time delay event [11]. Li
et al. investigated the HFS problem with operation skipping by utilizing
an improved ABC algorithm [12]. Peng et al. solved the rescheduling in
steelmaking-refining-continuous casting process by using an ABC algo-
rithm [13]. Liu et al. solve a path planning problem for crowd evacuation
in buildings [14]. It should be noted that, the above works related to the
HFS problems considered each job as a whole part, which makes the
downstream machine idle and lowers the efficiency of the system.
Therefore, in the HFS systems, splitting a lot is both possible and
desirable.

Lot streaming is the process to split a job into sub-lots and then all
these sub-lots should be scheduled separately. Therefore, in the lot-
streaming scheduling problems, there are generally three tasks to be

* Corresponding author. College of Computer Science, Liaocheng University, Liaocheng, 252059, PR China.

E-mail address: lijunqing@lcu-cs.com (J.-q. Li).

https://doi.org/10.1016/j.swevo.2019.100600

Received 16 January 2019; Received in revised form 25 August 2019; Accepted 22 October 2019

Available online 6 November 2019
2210-6502/© 2019 Elsevier B.V. All rights reserved.

mailto:lijunqing@lcu-cs.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2019.100600&domain=pdf
www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2019.100600
https://doi.org/10.1016/j.swevo.2019.100600

J.-q. Li et al.

Swarm and Evolutionary Computation 52 (2020) 100600

3 5
1" stage I I I 1™ stage |1|-1|1|3|3|5|5|
2 T4]
2 sige —_— e I llll!l!l! g[s
soujourn ti:me SO ourn'time .
TE—{ 1 3] ”ﬁ-_
e {1 5] - TEGE] G
--m- .
| I | I
0 50 100 150 0 50 100 150
(a) Gantt chart without lot-streaming (b) Gantt chart with lot-streaming.
sub-lot vector i o % i R A
SRR
scheduling vector
e FsHatst o T 7 s o o] 1] 12]

(c) Coding representation.

Fig. 1. An example of solution representation.

sub-lot vector } 1 Jo [|

n :

—p— scheduling vector
4‘1".1*.2~".J3".l 4 1-5;;1, 9 \10!'6' :7:]:8:]
a [AALZA

s

) 579 [10]

14154

19 [10}

po—| scheduling vector

sub-lot vector

(a) Crossover with equal sub-lot vector

F s [
I

V121314156 [7[8]9]
o [If2 |
ﬁ 5 6 T340l 7 8]
53] 2] l
I +.r.+._rj
o 2B 7819 [4L516

(b) Crossover with different sub-lot vector

P

=370, /4=2}

AT

4151

Fig. 2. The procedure of the V-Crossover heuristic.

completed, i.e., to decide the number of sub-lots, to decide the machine
assignment for each sub-lot, and to schedule each sub-lot one each
assigned machine. The lot-streaming technique has received increased
attention [15] during recent years. An extensive survey of lot-streaming
in flowshop systems can be found in Ref. [16]. In recent years, swarm
intelligence algorithms have been applied to solve the lot-streaming flow
shop problem. Tseng and Liao solved the problem with the minimization
of the total weighted earliness and tardiness values by using a particle
swarm optimization (PSO) algorithm [17]. Marimuthu et al. addressed
the setup time problem by using evolutionary algorithms [18]. In
Ref. [19], the same authors solved the same problem to minimize
makespan by using an ant colony optimization (ACO) algorithm. Yoon
and Ventura proposed a genetic algorithm (GA) to solve this problem
[20]. Pan et al. studied the problem to minimize makespan by using an
estimation of distribution algorithm (EDA) [21], a self-organizing
migrating algorithm [22], an iterated local search algorithm (ILS) [23],
and a discrete invasive weed optimization algorithm (IWO) [24] have
also been applied to solve this problem. Recently, a hybrid algorithm has
also been investigated to solve the problem, such as the combination of
differential evolutionary (DE) and the PSO algorithms [25] and the
combination of the sheep flock heredity algorithm and the ABC algorithm
[26]. Meng et al. solved the integrated lot-streaming flow shop sched-
uling by using a migrating birds optimization (MBO) [27]. To solve this
problem with multiple objectives, Han et al. proposed a multi-objective

MBO algorithm [28]. Masmoudi et al. discussed a multi-item capaci-
tated lot-sizing and scheduling problem in a flowshop system and
developed a fix-and-relax heuristic [29].

Most of the papers we reviewed in the literature have studied lot
streaming in flowshop systems. However, HFS is more realistic in the
future of the industry; therefore, it is important to study lot streaming in
HFS systems. Tsubone et al. studied the lot streaming problem in a two-
stage HFS system [30]. Zhang et al. addressed lot streaming in an m-1
HFS system [31]. Then, Zhang et al. studied multi-job lot streaming to
minimize the mean completion time in this same problem [32]. Liu
addressed single-job lot streaming in an m-+1 two-stage HFS system [33].
Naderi and Yazdani utilized an imperialist competitive algorithm to solve
the HFS lot streaming problem with setup times [34]. Recently, Cheng
et al. studied a single-lot HFS lot streaming problem in a 1 + 2 HFS
system [35]. Very recently, Zhang et al. developed a modified MBO al-
gorithm to solve the HFS lot-streaming problem [36]. Nejati et al.
considered a two-stage assembly hybrid flow shop scheduling problem
with a work shift constraint and investigated a hybrid algorithm by
combining a GA with a simulated annealing (SA) algorithm [37]. Zohali
et al. studied an integrated economic lot-sizing and sequencing problem
(ELSP) in the HFS problem, which is one of the few literatures consid-
ering the variable lot-sizing problem [38]. However, the ELSP is different
with the considered problem in this study, where the former is a
cost-orient inventory model while the latter is a scheduling problem.

J.-q. Li et al.

l:l sub-lot of charge 1

l:l sub-lot of charge 2

Swarm and Evolutionary Computation 52 (2020) 100600

[]

sub-lot of charge 3

80 120 165 180 240 245 280 330 360 380 390 420
A2 3 4] 5 [6 [7T][8]
L1 12| 13
[[[
150 160 (a) 250 260 400 410
85 125 170 185 245 250 285 335 365 390 420
27 3 4 Jp s 16 [T][8]
B 12| 13
[1 [
150 160 (b) 250 260 400 410
90 130 175 190 250 255 285290 340 370 390 420
L2 3 4 5 [6 [7[8]
11 12| 13
[o [
150 160 © 250 260 400 410
95 135 180 195 255 260 290 340 370 390 420
[3 41 5 [617]18]
Ry 12| 13
1 [1
150 160 () 250 260 400 410
100 140 185 200 260 290 340 370 390 420
L 2 3 L4 1 5 16 [7]8]
L1 12| 13
[[[
150 160 250 260 400 410
O]
110 150 200 260 290 340 370 390 420
Lrp-2 3 [41 5 [617[8]
| 12 13
[T [
150 160 250 260 400 410
®
115 155 200 260 290 340 370 390 420
L2] 3 41 5 [6[7]8]
R 12| 13
1 [1
150 160 () 250 260 400 410
Fig. 3. Example for Algorithm 3.
Chen et al. solved the energy-efficient lot-streaming HFS problem by multi-objective [40-45]. Meanwhile, during recent years, the

using a multi-objective optimization algorithm, where the problem is
similar with this study except the due time window and the objectives
[39]. It can be concluded from the literatures about the lot-streaming
that, most of the literature assumes that the number of sub-lots is pre-
defined and unchangeable, but in realistic systems, the number of
sub-lots can always change according to the production performance.
In addition, most of the research work considers a single objective
problem or weighted sum objectives, but the decision process is often

multi-objective evolutionary algorithm based on decomposition
(MOEA/D) has been researched and applied for numerous optimization
problems [46-50]. Therefore, in this study, we consider multi-objective
lot streaming in HFS systems with a flexible number of sub-lots.

The main challenges of the lot-streaming HFS are as follows: (1) how
to define the optimal number of sub-lots for the considered problem, and
therefore to minimize the considering multiple objectives; (2) how to
apply the crossover operator to the solutions with different sub-lot size,

J.-q. Li et al.

1
[
[
08l | | e
| ®
e .
®
0.6+ | &/ g
| ®
4 °
! % | reference point

0.6

0.2 0.4
Fig. 4. Example of the reference points generalization.

and thus make the newly-generated solution feasible; and (3) how to
design efficient and effective problem-specific heuristics and thus
improve the performance of the algorithm. To solve the aforementioned
challenges, we proposed a MOEA/D with problem-specific heuristics
(PH-MOEAD), and the main contributions of this study are as follows:

e The lot-streaming HFS problem with a variable number of sub-lots is
investigated, which has rarely been considered in the literature and
which is common in realistic production systems;

e A variation crossover that considers the problem features is proposed
to tackle two parent solutions with different sub-lot vectors;

o Aright-shift heuristic considering the problem structure and objective
characteristics is investigated to improve the solution quality;

e A novel mutation heuristic considering the permutations in the sub-
lots is proposed, which can improve the exploitation abilities.

The rest of this paper is organized as follows. Section 2 briefly de-
scribes the problem. Next, the proposed algorithm, which embeds the
problem-specific heuristics, is presented in Section 3. Section 4 illustrates
the experimental results and makes comparisons to the performance re-
sults of algorithms from the literature to demonstrate the superiority of
the proposed algorithm. Finally, the last section presents the concluding
remarks and future research directions.

0.8

0.7 ®

(a) Population without applying the initialization heuristic

Swarm and Evolutionary Computation 52 (2020) 100600
2. Problem description

In this study, we consider a lot-streaming HFS problem, where there
are n jobs to be processed through h stages, and each stage contains
several parallel machines. To make the production process more effi-
cient, the lot streaming technique is desirable. In a lot streaming HFS
system, each job can be split into several sub-lots, of which each sub-lot
can be simultaneously processed on different machines in an indepen-
dent and parallel manner.

The problem is to determine the optimal: (i) number of sub-lots; (ii)
sub-lot sizes, (iii) allocation of machines in each stage for each sub-lot;
and (iv) the processing sequence of each sub-lot on each machine to
minimize the four objectives simultaneously, i.e., the penalties caused by
the average sojourn time, the energy consumption in the last stage, as
well as the earliness and the tardiness values. It should be noted that the
energy consumed in the last stage is very important for some industrial
horizon, such as steelmaking casting system, and therefore the second
objective function only considers the energy consumption in the last
stage. Similar as most of the published literatures about the lot-streaming
problems, in this study, we only consider the off-line features, that is, the
real-time features are not considered.

(1) Assumptions

e The processing time is a positive integer for each sub-lot, which
is pre-defined and deterministic.

o All the machines are available at time zero and remain contin-
uously available during the entire production horizon.

e In each stage, each sub-lot of any job can select exactly one
machine, and each machine can process only one sub-lot at any
processing time.

o The processing of a sub-lot in the following stage can begin only
after its completion in the previous stage.

Table 1
ANOVA table on scaled IGD values for the parameters.
Source ss DF MS F Prob >F
Vn 0.00048 3 0.00016 5.4 0.0048
Pm 0.00112 3 0.00037 12.63 0.0000
Pe 0.00002 3 0.00001 0.17 0.913
Vn* Pm 0.00046 9 0.00005 1.72 0.1318
Vn* Pe 0.00021 9 0.00002 0.79 0.6299
Pm* D 0.00025 9 0.00003 0.95 0.5012
Error 0.0008 27 0.00003
total 0.00333 63
1

0.9

0.8

0.7

» ° °
0.6 1
0.5]
[]
041
L 3

0.3]

0.2

01 &

L]
ob——= r L r r r r r r ry

0 0.1 02 03 04 05 06 07 08 09 1

(b) Population after applying the initialization heuristic

Fig. 5. Population initialization heuristic.

J.-q. Li et al. Swarm and Evolutionary Computation 52 (2020) 100600
0125 F T T T T 9 T T T T T
- 0.135 + 1
—_ ! ! ol —)
012 } | i I
| : 0125 z L]
| _ o A -
0115 _] 012 1 | | } 1 1
T e | |
! 0.115 ! 1
I
0.11 q 011 + 4
| 0.105 - I 4
0105 - ! } g ! ! } !
| e | orr i ! e R
- AL —- 0095 -+ 1
01 | 1
1 0.09 - + 4
2‘ ; T‘EI Z‘D l; 0'1 EI‘Z 0‘5 D‘B
Vn Pc
(a) 95% Confidence interval for v, (c¢) 95% Confidence interval for p.
0.125 T ’ ’ i q
i . N
012 F | | 4
|
T
0.115 —_ I q
! i
on b I ! | 4
-
0.105 } 1
o ‘ :
orr L | 1
R
0.095 [9
0.09 - " 9
O.l1 0‘2 Ol5 D‘S
Pm
(b) 95% Confidence interval for p,,
Fig. 6. 95% Confidence interval for different selections of v,, pm, and p.
Table 2
Comparison results for the HFS lot-streaming with single-objective.
Instance best RPI values dev
PH-MOEAD EMBO GA GAR DPSO DABC PH-MOEAD EMBO GA GAR DPSO DABC
20x5 0.29 0.29 0.29 1.33 1.21 0.39 0.80 0.00 0.00 358.62 317.24 34.48 175.86
20 x 10 0.37 0.37 0.40 1.96 1.66 0.54 1.41 0.00 8.11 429.73 348.65 45.95 281.08
40 x5 0.80 0.82 0.80 2.39 2.36 1.99 4.12 2.50 0.00 198.75 195.00 148.75 415.00
40 x 10 0.59 0.59 0.65 3.10 3.56 3.24 4.12 0.00 10.17 425.42 503.39 449.15 598.31
60 x5 0.40 0.40 0.46 3.29 4.25 5.27 3.92 0.00 15.00 722.50 962.50 1217.50 880.00
60 x 10 0.78 0.78 0.82 2.40 3.32 4.22 7.62 0.00 5.13 207.69 325.64 441.03 876.92
80 x5 0.33 0.33 0.43 2.36 2.11 4.40 6.66 0.00 30.30 615.15 539.39 1233.33 1918.18
80 x 10 0.81 0.81 0.86 2.72 3.61 6.80 4.47 0.00 6.17 235.80 345.68 739.51 451.85
100 x5 0.28 0.28 0.39 2.36 4.97 4.05 3.74 0.00 39.29 742.86 1675.00 1346.43 1235.71
100 x 10 0.71 0.71 0.79 3.07 5.01 4.58 4.72 0.00 11.27 332.39 605.63 545.07 564.79
mean 0.54 0.54 0.59 2.50 3.21 3.55 4.16 0.25 12.54 426.89 581.81 620.12 739.77

e There are enough buffers between any two continuous stages,
such that after the completion of the current stage, any sub-lot
can be passed to the next stage immediately.

e Each job can be split into several sub-lots with the same lot
sizes.

(2) Notation

Index:

e i: Index of jobs;

e j: Index of machines;

e k: Index of stages;

e [: Index of sub-lots;

e n: Total number of jobs;

e m: Total number of machines;

e h: Total number of stages;

e my: Number of machines in stage k;

e p;jkr The processing time of the sub-lot [of job i in stage k on machine
J5

e SD;, ED;: the starting and completion of the due time window of the
ith job in the horizon, i=1,2, ...,n;

o Tyki1: transfer time from stage k to stage k +1;

e PW;: the working energy consumption of the jth machine in stage k;

® w1, Wy, w3, and w4: the weight coefficients for the four objectives,
respectively.

Decision variables:

J.-q. Li et al.

Swarm and Evolutionary Computation 52 (2020) 100600

2000 F T T T T T i e 7ixjr1: @ binary value that is set to 1 if sub-lot [of job i in stage k is
1800 assigned to machine j in priority r; otherwise, 7y is set to 0;
. e sij,: start time of the sub-lot processing in machine j in priority r in
1600 [- stage k;
1400 e gi;: number of sub-lots assigned to machine j in stage k
o e
% 1200 - T The main mathematical model for the considered problem is given as
9 I follows:min f= {Fj, Fa, F3, F4}
3 1000 | I
= -
Z | n o Min
-(% 800 - - : Fy= (Z Z(Si,h.l - Ci.l,l)) /N 1)
= =1 =1
! g
Conax My
400 -
| _ '
| Fa= 323 (PW-2,) @
200 |- € 1 =1 =1
£ 1
oF —+— n Mih
: : l * ' : Fy=""" max(SD; - si:,0) ()
PH-MOEAD ~ EMBO GA GAR DPSO DABC p
p-values=9.7442-06
Fig. 7. Means and 95% LSD interval for PH-MOEAD, EMBO, GA, GAR, DPSO e B S . 4
and DABC (CPU = 30). 4= Z 2 max(sis; — ED;, 0) “)
Py
e N: total number of sub-lots in the system; e
e n;: number of sub-lots of job i in stage k; Xk =1, Vi, L,k 5)
e s;i1: start time of sub-lot l of job i in stage k; =
e cii ;- completion time of sub-lot I of job i in stage k;
® Cnax: the completion time of the last sub-lot on the last machine in the Sirra > (Siga + Pijaa + Tianr)- Vinj, L k=1, h =1 (6)
last stage.
® X;ik;: a binary value that is set to 1 if sub-lot [of job i in stage k is Skjr +Dijkd* Tikjrd < Sjrets Vijy Lk,r =1, ., qy —)
assigned to machine j; otherwise, x;x is set to 0;
. z;_k: a binary value that is set to 1 if the jth machine in stage k is akj
working at time t; otherwise, zj; is set to 0; 1 Tikjea =Xiajo, Vi j, L € {1, ..mip — 1} ®
L =
Table 3
Comparisons of the HV values for the mutation heuristic.
Instance best PH-MOEAD PH-MOEAD-NM dev’
max avg min max avg min PH-MOEAD PH-MOEAD-NC
20 x5 0.53 0.53 0.51 0.46 0.41 0.39 0.38 0.00 23.82
20 x 10 0.54 0.54 0.50 0.48 0.53 0.52 0.51 0.00 1.88
40 x5 0.42 0.42 0.39 0.38 0.40 0.40 0.39 0.00 5.56
40 x 10 0.47 0.47 0.47 0.47 0.47 0.46 0.45 0.00 1.17
60 x 5 0.39 0.39 0.38 0.37 0.39 0.37 0.32 0.00 1.63
60 x 10 0.47 0.47 0.46 0.45 0.47 0.46 0.42 0.26 0.00
80 x5 0.48 0.48 0.43 0.42 0.44 0.41 0.39 0.00 7.69
80 x 10 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.00 0.10
100 x 5 0.43 0.43 0.41 0.37 0.40 0.38 0.36 0.00 7.11
100 x 10 0.54 0.54 0.53 0.53 0.54 0.53 0.53 0.08 0.00
mean 0.48 0.48 0.46 0.44 0.45 0.44 0.42 0.03 4.90
Table 4
Comparisons of the HV values for the right-shift heuristic.
Instance best PH-MOEAD PH-MOEAD-NR dev”
max avg min max avg min PH-MOEAD PH-MOEAD-NR
20-5 0.58 0.58 0.58 0.55 0.56 0.56 0.55 0.00 3.01
20-10 0.69 0.69 0.69 0.68 0.67 0.66 0.66 0.00 3.00
40-5 0.60 0.60 0.58 0.57 0.53 0.53 0.52 0.00 11.27
40-10 0.43 0.43 0.43 0.42 0.37 0.37 0.37 0.00 13.60
60-5 0.48 0.44 0.43 0.42 0.48 0.47 0.46 7.90 0.00
60-10 0.68 0.67 0.67 0.66 0.68 0.67 0.67 0.94 0.00
80-5 0.66 0.66 0.64 0.62 0.55 0.51 0.51 0.00 17.15
80-10 0.68 0.68 0.67 0.67 0.53 0.52 0.51 0.00 22.02
100-5 0.51 0.51 0.51 0.50 0.44 0.43 0.43 0.00 14.42
100-10 0.53 0.53 0.53 0.52 0.53 0.52 0.52 0.00 1.30
mean 0.58 0.58 0.57 0.56 0.53 0.52 0.52 0.88 8.58

J.-q. Li et al. Swarm and Evolutionary Computation 52 (2020) 100600
Table 5
Comparisons of the HV values for the crossover heuristic.
Instance Best PH-MOEAD PH-MOEAD-NC dev™”
max avg min max avg min PH-MOEAD PH-MOEAD-NC
20-5 0.56 0.56 0.53 0.52 0.53 0.50 0.49 0.00 5.27
20-10 0.53 0.53 0.52 0.48 0.51 0.47 0.32 0.00 4.66
40-5 0.58 0.58 0.53 0.52 0.58 0.56 0.51 0.00 0.23
40-10 0.19 0.19 0.18 0.15 0.12 0.11 0.07 0.00 35.52
60-5 0.32 0.32 0.26 0.24 0.30 0.24 0.22 0.00 7.04
60-10 0.77 0.68 0.68 0.68 0.77 0.77 0.76 11.01 0.00
80-5 0.68 0.68 0.67 0.64 0.65 0.64 0.60 0.00 4.32
80-10 0.19 0.19 0.16 0.14 0.17 0.15 0.13 0.00 11.23
100-5 0.43 0.43 0.41 0.10 0.41 0.37 0.28 0.00 4.26
100-10 0.56 0.56 0.54 0.53 0.18 0.17 0.13 0.00 68.03
mean 0.48 0.47 0.45 0.40 0.42 0.40 0.35 1.10 14.06
Table 6
Comparisons of the HV values between MOEA/D, NSGA-II, DBEA, EMBO and PH-MOEAD (u = 30).
Instance MOEA/D NSGA-II DBEA EMBO PH-MOEAD
max avg min max avg min max avg min max avg min max avg min
Casel 0.495 0.486 0.481 0.443 0.438 0.436 0.583 0.573 0.559 0.521 0.514 0.51 0.602 0.59 0.587
Case2 0.517 0.508 0.504 0.135 0.135 0.132 0.443 0.431 0.41 0.437 0.433 0.424 0.893 0.89 0.885
Case3 0.435 0.421 0.415 0.328 0.312 0.306 0.45 0.432 0.421 0.4 0.385 0.378 0.543 0.522 0.504
Case4 0.3 0.298 0.297 0.055 0.055 0.054 0.508 0.499 0.491 0.192 0.186 0.18 0.423 0.418 0.403
Case5 0.329 0.327 0.325 0.071 0.071 0.071 0.366 0.363 0.361 0.276 0.272 0.266 0.48 0.476 0.47
Caseb 0.286 0.282 0.279 0.187 0.186 0.185 0.256 0.247 0.245 0.231 0.23 0.229 0.991 0.991 0.99
Case7 0.47 0.463 0.458 0.34 0.339 0.338 0.508 0.505 0.503 0.467 0.465 0.462 0.869 0.868 0.866
Case8 0.193 0.191 0.19 0.061 0.061 0.06 0.317 0.306 0.3 0.108 0.107 0.106 0.434 0.432 0.429
Case9 0.421 0.397 0.389 0.064 0.061 0.06 0.353 0.323 0.308 0.131 0.121 0.118 0.483 0.451 0.439
Casel0 0.123 0.122 0.121 0.057 0.057 0.057 0.534 0.53 0.523 0.19 0.188 0.186 0.472 0.467 0.463
Mean 0.357 0.349 0.346 0.174 0.171 0.17 0.432 0.421 0.412 0.295 0.29 0.286 0.619 0.611 0.604
Table 7
Comparisons of the HV values between MOEA/D, NSGA-II, DBEA, EMBO and PH-MOEAD (u = 50).
Instance MOEA/D NSGA-II DBEA EMBO PH-MOEAD
max avg min max avg min max avg min max avg min max avg min
Casel 0.595 0.572 0.553 0.453 0.449 0.443 0.613 0.601 0.598 0.528 0.526 0.521 0.596 0.593 0.586
Case2 0.513 0.499 0.49 0.135 0.135 0.134 0.427 0.423 0.42 0.447 0.445 0.443 0.888 0.886 0.884
Case3 0.402 0.399 0.396 0.309 0.304 0.303 0.41 0.403 0.389 0.374 0.372 0.371 0.524 0.516 0.506
Case4 0.262 0.248 0.242 0.048 0.046 0.044 0.429 0.399 0.384 0.164 0.148 0.141 0.555 0.532 0.519
Case5 0.308 0.285 0.269 0.069 0.064 0.063 0.342 0.317 0.303 0.281 0.266 0.244 0.515 0.505 0.501
Case6 0.283 0.28 0.276 0.189 0.188 0.187 0.262 0.256 0.251 0.238 0.227 0.225 0.992 0.991 0.991
Case7 0.502 0.48 0.448 0.369 0.365 0.342 0.514 0.511 0.508 0.468 0.465 0.457 0.879 0.877 0.873
Case8 0.17 0.164 0.162 0.055 0.052 0.052 0.289 0.279 0.274 0.112 0.106 0.093 0.434 0.422 0.411
Case9 0.392 0.379 0.365 0.059 0.057 0.056 0.418 0.385 0.361 0.106 0.105 0.104 0.52 0.505 0.494
Casel0 0.103 0.102 0.101 0.045 0.045 0.044 0.478 0.471 0.464 0.177 0.175 0.173 0.566 0.562 0.55
Mean 0.353 0.341 0.33 0.173 0.17 0.167 0.418 0.405 0.395 0.29 0.284 0.277 0.647 0.639 0.632
Table 8
Comparisons of the HV values between MOEA/D, NSGA-II, DBEA, EMBO and PH-MOEAD (u = 100).
Instance MOEA/D NSGA-II DBEA EMBO PH-MOEAD
max avg min max avg min max avg min max avg min max avg min
Casel 0.589 0.583 0.551 0.457 0.455 0.448 0.598 0.592 0.589 0.518 0.515 0.51 0.629 0.622 0.614
Case2 0.51 0.494 0.489 0.135 0.134 0.133 0.423 0.421 0.419 0.443 0.442 0.441 0.887 0.885 0.883
Case3 0.483 0.466 0.449 0.366 0.358 0.35 0.521 0.492 0.462 0.45 0.434 0.417 0.595 0.565 0.532
Case4 0.283 0.273 0.258 0.052 0.05 0.048 0.461 0.445 0.402 0.174 0.166 0.145 0.526 0.514 0.479
Case5 0.402 0.4 0.398 0.102 0.1 0.096 0.446 0.44 0.433 0.376 0.372 0.369 0.454 0.45 0.447
Case6 0.3 0.297 0.293 0.201 0.2 0.199 0.275 0.271 0.266 0.253 0.242 0.238 0.996 0.995 0.994
Case?7 0.516 0.481 0.465 0.377 0.376 0.375 0.529 0.523 0.518 0.478 0.476 0.469 0.864 0.862 0.859
Case8 0.195 0.194 0.192 0.06 0.06 0.059 0.335 0.333 0.331 0.13 0.12 0.111 0.414 0.371 0.344
Case9 0.357 0.342 0.334 0.049 0.049 0.048 0.351 0.346 0.337 0.099 0.098 0.094 0.455 0.449 0.439
Casel0 0.103 0.1 0.099 0.049 0.048 0.048 0.459 0.452 0.445 0.167 0.159 0.157 0.512 0.502 0.472
Mean 0.374 0.363 0.353 0.185 0.183 0.181 0.44 0.431 0.42 0.309 0.302 0.295 0.633 0.622 0.606
Xk € {0, 1}, Vi, Lk 9 z;.»k € {0,1}, Vj,k 10

J.-q. Li et al.

Swarm and Evolutionary Computation 52 (2020) 100600

Table 9
Comparisons of the IGD values between MOEA/D, NSGA-II, DBEA, EMBO and PH-MOEAD (u = 100).
Instance MOEA/D NSGA-II DBEA EMBO PH-MOEAD
min avg max min avg max min avg max min avg max min avg max
20-5 0.17 0.19 0.22 0.17 0.25 0.36 0.21 0.23 0.24 0.20 0.21 0.21 0.16 0.19 0.21
20-10 0.38 0.45 0.57 0.05 0.17 0.56 0.13 0.68 0.73 0.58 0.58 0.58 0.04 0.21 0.25
40-5 0.16 0.18 0.20 0.26 0.38 0.45 0.14 0.17 0.19 0.16 0.17 0.20 0.16 0.19 0.20
40-10 0.14 0.16 0.16 0.25 0.28 0.35 0.15 0.18 0.23 0.21 0.22 0.22 0.15 0.23 0.42
60-5 0.27 0.28 0.29 0.23 0.34 0.45 0.21 0.24 0.27 0.31 0.31 0.31 0.18 0.19 0.19
60-10 0.07 0.44 0.69 0.07 0.16 0.38 0.36 0.54 0.88 0.55 0.61 0.95 0.04 0.06 0.07
80-5 0.19 0.20 0.21 0.31 0.37 0.44 0.30 0.33 0.37 0.32 0.35 0.36 0.28 0.29 0.39
80-10 0.16 0.17 0.18 0.24 0.33 0.36 0.23 0.23 0.24 0.41 0.43 0.44 0.24 0.25 0.26
100-5 0.34 0.41 0.44 0.27 0.29 0.36 0.21 0.23 0.26 0.40 0.40 0.40 0.16 0.20 0.28
100-10 0.25 0.28 0.29 0.17 0.21 0.25 0.17 0.21 0.23 0.31 0.32 0.33 0.10 0.14 0.30
20-5 0.21 0.28 0.33 0.20 0.28 0.40 0.21 0.30 0.36 0.35 0.36 0.40 0.15 0.20 0.26
1 T 7 1 T 1
| |
0.9 | 1 0.9 - } R
|
0.8 B 0.8 F g
0.7 1 0.7+ B
g g
F06 o — F06F - —
I I
Z 05 — - 1 Z o5k ! ! e 1
%’ — 1 %’ e AL
504r | 1 504r } 1
0.3 ‘ I 03 | ! R
7 | 1
02+ : B 02 l 1
|
0.1 - -+ 1 01 4 —+ 1
0 E| 0t E
MOEA/D NSGA-II DBEA EMBO PH-MOEAD MOEA/D NSGA-Il DBEA EMBO PH-MOEAD
p-=1.1863¢-07 p-value=3.1002e-08

(a) ANOVA results for average values of HV comparisons (#=30).

- _
]
09 F !
08
07}
5
206 —
- I I
> L
Z 05
Py T
204t
5
>]
503 F
|
02+ |
|
ok L
ok
MOEA/D NSGA-II DBEA EMBO PH-MOEAD

(b) ANOVA results for average values of HV comparisons (#=50).

p-value=5.1230e-06

(c) ANOVA results for average values of HV comparisons (#=100).

0.7 T T T T T
+
0.6 - - g
|
+ |
05 | 1
@
g |
i
IS
A 04+ -+
<
o
%’J
5 03 |
= I
02 1 |
I L . - |
-
0.1 - ki
+
L . L . L
MOEA/D NSGA-II DBEA EMBO PH-MOEAD
p-value=0.0667

(d) ANOVA results for average values of IGD comparisons (1#=100).

Fig. 8. Means and 95% LSD interval for MOEA/D, NSGA-II, DBEA, EMBO, and PH-MOEAD.

Tikjra €40, 1}, V0, Lj kor = 1, .., gy 11

The objective functions (1)-(4) minimize the penalty caused by the
average sojourn time, the energy consumption in the last stage, as well as
the earliness and the tardiness values. Constraint (5) ensures that a job
must select only one machine in each stage. Constraint (6) guarantees
that, for two consecutive sub-lots of each job, it should be started after
the completion time of its predecessor stage plus the transfer times be-
tween the two stages. Constraints (7) and (8) are used to avoid an overlap
of the processing times of two sub-lots on a machine. Constraints (9)-(11)
define the value ranges for the decision variables.

3. The proposed algorithm

In this section, we describe the detailed implementation of the pro-
posed algorithm, i.e., PH-MOEAD, to solve the hybrid flowshop sched-
uling (HFS) problem, in which lot-streaming constraints are considered.
First, we describe the framework of the proposed algorithm. Then, the
problem-specific heuristics including coding, mutation, crossover, and
right-shift heuristic are presented. Finally, the multi-objective heuristics
including reference regions generalization, population initialization, and
neighborhood adaption heuristics are illustrated.

J.-q. Li et al Swarm and Evolutionary Computation 52 (2020) 100600

e - [Iaasy] o s
5321

wis = [+] I [=] W

- E[2[2felz] =100 0 fctoy 4

5714
3923

) R B0],
wiz |- A [T o [filiifielsel of [[e]
5003
M11—-I I EE@ H | ! | | 14213
M10 [T T Te DM Tl s T [- -4283 factory 3
o ISR T NN TR TR« T~ e
we (I (o] [ehmemrN TR = 1] | factory 2
2200
(B DIeEz N BN
2200
[e1] [CETTTR TR + 0[]

13

M14

M13

machine

2797

3153
factory 1

2647

| | |
0 1000 2000 3000 4000 5000
time (s)

Fig. 9. Gantt chart for a solution for one of the 20-5 instance.

3.1. Framework of the proposed algorithm

Algorithm 1
General Framework of PH-MOEAD.

Algorithm 1: General Framework of PH-MOEAD

input: system parameters, including the population size Ps,. and the stop criterion,

output: the final Pareto archive set P4

1. [P, W, E] «Initialization() as listed in sub-section 3.7; // P is the parent population, ¥ is the weight vector set
or reference lines, and £ is the neighborhood index set

2 Perform following steps v, times

3 while stop criterion is not satisfied do

4 for i <N do

5. P'<—Mating_selection(E(i), P); //select the parent solutions from the neighborhood region
6. S—GA_operator(P") //as illustrated in sub-section 3.3 and 3.4

7 S<—right-shift(S) //as illustrated in sub-section 3.5

8 foreach x. € S do //x. is an offspring

9. P<—Update_population(P’, x..) //as illustrated in the canonical MOEA/D
10. PA<—Update PAS(PA, x..) //as illustrated in the canonical MOEA/D

11. end

12. perform the neighborhood adaption heuristic illustrated in sub-section 3.8

13. end

Algorithm 1 presents the general framework of the proposed PH- PH-MOEAD will be explained step by step.
MOEAD. First, the initialization procedure discussed in sub-section 3.7
generates Py, initial solutions with encoding as in sub-section 3.2, and 3.2. Encoding
each solution is assigned to the most suitable weighted coefficient or
reference region generated as in sub-section 3.6. Following the initial
procedures, the main while procedure begins. During the main while, we
randomly select two parent solutions in the neighborhood region to
generate an offspring by using the operators discussed in sub-section 3.3
and sub-section 3.4, and use the newly generated offspring solution to
update the Pareto level and the parent population. In the following sub-
sections, the implementation details of each component in the proposed

To represent a solution, we introduce a simple encoding that contains
two vectors. The first vector, named the sub-lot vector, lists the number of
sub-lots for each job. The second vector, named the scheduling vector,
gives the processing sequence for each sub-lot. Fig. 1 (a) shows a Gantt
chart without lot-streaming, and Fig. 1 (b) gives a Gantt chart with lot-
streaming. In this example given in Fig. 1 (b), the number of sub-lots
for each job is {3,2,2,3,2}, which means that the first job is split into

J.-q. Li et al.

three sub-lots, and the second job is split into two parts and so on. The
second vector displays the processing sequence of each sub-lot in each
stage. One example vector is {1,2,3,4,5,6,7,8,9,10,11,12}, which means
that, in the first stage, each sub-lot of the first job is processed immedi-
ately on the assigned machine, and then the sub-lots of the second job are
scheduled. The last job to be considered is the fifth job. It should be noted
that, in the following stages, each sub-lot of the same job can be trans-
mitted and processed immediately when the assigned machine is idle
without considering other sub-lots. That is, each sub-lot of the same job is
processed independently. Fig. 1 (c) illustrates the coding representation

Algorithm 2
V-Crossover.

Swarm and Evolutionary Computation 52 (2020) 100600

3.4. Crossover heuristic

In the proposed algorithm, we adopt a two-point crossover operator
for both vectors. The main difficulty in designing the crossover operator
is that the two parent solutions may have different sub-lot vectors, that is,
their first vectors are different. To tackle this issue, we propose a varia-
tion crossover operator named V-Crossover (see Fig. 2). The detailed
implementation of the V-Crossover is given in Algorithm 2.

Algorithm 2: V-Crossover

input: two parent solutions p; and p,
output: the offspring solution ¢

1. hi«the length of the sub-lot vector of pi, h«—the length of the sub-lot vector of p»
2. if /1= h, then //(as illustrated in Fig. 2(a)
3. randomly select two positions 7 and 7, in the sub-lot vector
4. copy the elements in [0, 7] from p; to ¢;
5. copy the elements in [r, 2] from pato ¢
6. copy the elements in [r2,| k4[] from p; to ¢
7. delete the duplicate element in ¢; and insert the remaining elements that have not been included in ¢,
according to their sequence in p;.
8. otherwise //(as illustrated in Fig. 2(b)
9. len—min{|hy|,|h,|}
10. randomly select two positions 71 and 7, in the range of [0, /en] in the sub-lot vector
11. copy the elements in [0, 7] from p; to ¢
12. for j—r to > do
13. if po[/]< len then // ps[}] is the j® element of p>
14. | copy the elements in position j from pyto ¢
15. end
16. end
17. copy the elements in [r2,|hy|] from p; to ¢;
18. let f={fi=0, /r=0,..., f,=0}, where f; represents the occurrence number of job i and » is the total number
of jobs.
19. delete the duplicate element in ¢; and count the occurrence number f; for each job.
20. for j—1to |c;| do
21. compute the job number i containing the j sub-lot
22. if 7u(7)- f; >0 then
23. insert the remaining /41(i)- f; sub-lot number of job i/ immediately after the last sub-lot of
job i.
24. end
25. end
26. end

of the example solution.

3.3. Mutation heuristic

To generate a different solution from the initial solution, a mutation
operator has commonly been used in the literature. In this study, two
types of mutation operators are used.

The first type of mutation operator generates a different vector for the
sub-lot vector. For this type of operator, we use a simple method, that is,
we randomly select an element in this vector and then randomly assign
another available value for this selected element. It should be noted that,
this type of mutation is special for the lot-streaming with variable sub-
lots, and therefore can complete the exploitation task for the consid-
ered problem.

The second type of mutation operator generates a different vector for
the scheduling vector. For this type of operator, we use the two
commonly used mutation operators, i.e., swap and insertion. The detailed
procedures of these mutation operators are as follows: (1) for the swap
operator, we randomly select two elements in this vector and then swap
these two elements; and (2) for the insertion operator, we randomly
select two elements in this vector and then insert the successor operation
into the position before the previous operation.

10

3.5. Right-shift heuristic

In this study, we consider four objectives simultaneously. Based on
the decomposition-based MOEA/D approach, each solution has an
assigned weight vector or reference line used to compute a determined
value. Therefore, in computing the fitness value for each solution, the
process is similar to the weighted sum method. Considering the four
problem-specific objectives, we propose a novel right-shift heuristic,
which can clearly improve the solution quality.

Let Sg denotes the sub-lots which can be considered to be right shift
and its start time s;; < SD;, Sp denotes the sub-lots that can be consid-
ered to be right shift and its start time SD; < s;; < ED;, and St denotes
the sub-lots which can be considered to be right shift and its start time
sin1 > ED;. Let c1, co, c3, and c4 represents the changes in the four ob-
jectives after right shift one time unit. We have following three lemmas:

Lemma 1. Given a sub-lot 1, let c1:Wx w1, c2=SWjp x

2, ¢3=|Sg| X w3, c4=|St| X Wa, if ca+c3>c1+c4, then we can right shift

all sub-lots on the same machine with and being processed before 1.
Proof. In this case, we should consider the increasing penalties caused

by the average sojourn time (C1ZW X @q) and the tardiness

penalty (c4= |St| X s4), and the decreasing penalties caused by the

J.-q. Li et al.

earliness penalty (c3=|Sg| x w3) and the standby energy consumption
(co=SW; x w2). Because ca+c3>C1-+c4, this means that the decreasing
penalties are bigger than the increasing penalties, and we can right shift
the considered sub-lots.

Lemma 2. Given a sub-lot 1, let c1:W>< 1, C2=SWjp x

2, c3=|Sg| X w3, if ca+c3>c1, then we can shift each sub-lot processing
before 1 and in {Sg,Sp } to the right.

Proof. In this case, the sub-lots being in Sg or Sp sets and on the same
machine with the given sub-lot 1 can be right shifted simultaneously. The
right shift condition is ca+c3>c;.

Lemma 3. Given a sub-lot 1, let ¢; = % X w1, Ca = SWjpx w2,C3

= |Sg| x ws, if ca+c3>c1, then we can shift each sub-lot processing
before 1 and in {Sg } to the right.

Proof. In this case, the sub-lots being in Sg and on the same machine
with the given sub-lot 1 can be right shifted simultaneously. The right
shift condition is ca+c3>c; and |Sg[>0.

The time complexity of the right-shift heuristic is O(n?m), and the
detailed implementation of the right-shift heuristic is illustrated in Al-
gorithms 3 and 4.

Here, we give an example to illustrate the right shift procedures. Let
01=0.4, 2=0.1, w3=0.1, ®4=0.3, and SW;;,=1.2, In Fig. 3(a), given that
the currently considered sub-lot is lg, and that the other sub-lots pro-
cessed before Ig can be divided into three sets, i.e., Sg={1,2,3,4,6,7},
Sp={}, Sy={5}. It should be noted that the sub-lots belonging to the same
job have the same due data window. The earliness values of the sub-lots
in Sg are 70, 30, 70, 5, 70, and 40, respectively.

Algorithm 3
Right shift according to the processing sequence.

Swarm and Evolutionary Computation 52 (2020) 100600

First, we consider the while procedure listed in Algorithm 4 from line
10 to 18, where c1= (|Sg|+|Sp|+|St|)/N x w1 =(7/8) x 0.4=0.35,
c2=SWjp x @2=0.12, c3=|Sg| X @3=0.6, c4=|St| x 04=0.3. Therefore,
ca+c3>c1+c4, and the first loop procedure will be performed. Here,
6;=min{70,30,70,5,70,40}=5, ,=min{260-250}=10, y=390-380=10,
and & = min{6;,60,y}=5. Therefore, we can right shift all sub-lots pro-
cessing before g by 5 time units. The resulting Gantt chart is given in
Fig. 3(b). Then, the resulting three set Sg={1,2,3,6,7}, Sp={4}, St={5},
and the updated values are ¢;=0.35, c;=0.12, ¢3=0.5, and c4=0.1.
Therefore, the first loop procedure will be performed again by right
shifting 5 time units. The resulting Gantt chart is given in Fig. 3(c), where
y=0 means that sub-lots Is, l¢, and 1; cannot be right shifted.

Algorithm 3: Right shift according to the processing sequence

input: the processing blocks in the last stage
output: the final processing blocks

1. for j«—1to mg do //mg isthe number of machines in the last stage

2. if |Tj| >1 then // |TJ| is the number of processing sub-lots on machine j
3. for I|T;| to 1 do

4. \ put the /™ sub-lot into a vector named V,

5. end

6. perform Algorithm 4 with (j, V)

7. end

8. end

11

J.-q. Li et al.

Algorithm 4
Execute the right shift.

Swarm and Evolutionary Computation 52 (2020) 100600

Algorithm 4: execute the right shift

input: the machine number j and the processing blocks ¥},
output: the final processing blocks

L. for I—1to |Vp| do
2. C14—Cp—C3¢Cy—0 <0, Sp—Sp—Sr—0
3. compute the starting time for each sub-lot in the last stage , and for each sub-lot p before / perform
following three steps.
4. if s;pp < SD; then store the sub-lot p in Sg
5. if SD; < sy < ED; then store the sub-lot p in Sp
6. if s;pp > ED; then store the sub-lot p in St
7. ¢ — ISE\+ISAIIJI+ISrI X Wy, C; —SWip X w5,
C3|Sg| X w3, c4—|S7| X w,
8. y«—time idle between the last sub-lot that can be right shifted and its successor sub-lot.
Perform one of the following loop procedures if the corresponding condition satisfies.
9.
10. while c,tc3>citc, do //Case-1
11. 6, «—the minimum earliness value in Sg
12. 0,«the minimum {ED;-s; ,;} value in Sp
13. 0 = min{6,, 6,,v}
14. if 6>0 then
15. perform the right shift for the jobs being processed before j
16. ey SESDIHST)
17 3 |Sgl X w3, cu—|Sr| X w,
18. end
19. while c,tc;>c; do //Case-11
20. 6, «—the minimum earliness value in Sg
21. 0, «the minimum {ED;-s; ,;} value in Sp
22. 6 = min{6,,6,,v}
23. if 6>0 then
24. shift each sub-lot processing before / and in {Sg,Sp } to the right by 6 time units
ISE[+1SDI
55 G Xwy, C—SWjp X w,,
26: C3|Sg| X w3
27. end
28. while c,tc;>c; and |Sg|>0 do //Case-III
29. 6, «the minimum earliness value in Sg
30. 6 = min{6,,v}
31. if 6>0 then
32. perform the right-shift procedure for the sub-lots in Sg
33. Cp—% X wy, C3—SWjp X Wy,
- 3 |Sg| X w3
35. end
36. end

Next, we can start the second loop procedure listed in Algorithm 4
from line 19 to 27. In the second loop, Sg={1,2,3} and Sp={4}, and the
updated values are ¢1=(|Sg| + |Sp|)/N x ©1=0.2, c=0.12, and c3=0.3.
Therefore, cy+c3>c1, and the second loop starts. In this case, the last sub-
lot that can be right shifted is 14. Here, 6; =min{60,20,60}=20, 6,=260-
255=5, y=290-285=5, and # = min{#;,02,y}=>5. Therefore, we can right
shift all sub-lots processing before 15 by 5 time units. The resulting Gantt
chart is given in Fig. 3(d).

Because the sub-lots after 13 cannot be right shifted, we consider 1y, 1o,
and 13, where Sg={1,2,3}, and the updated values are c¢;=|Sg|/ N x
®1=0.15, ¢3=0.12, ¢3=0.3. Therefore, ca+c3>c; and |Sg|>0 and the
third loop starts. In this case, the last sub-lot which can be right shifted is
13. Here, 6;=min{55,15,55}=15,y=290-285=5, and § = min{6;,y}=5.
Therefore, we can right shift all sub-lots processing before 14 by 5 time
units. The resulting Gantt chart is given in Fig. 3(e).

Next, we perform the third loop procedure again by considering right
shifting 1; and 1, and obtain the resulting Gantt chart given in Fig. 3(f), in
which only |; is remaining in Sg and both |; and 15 can be considered to be
right shifted. The last Gantt chart after right shifting is given in Fig. 3(g).

12

3.6. Reference regions generalization

A set of weight vectors W= {w;, wa, ...wy} is generated by a sys-
tematic approach, which is illustrated in detail from Das and Dennis [51].
In this approach, weight vectors are sampled with a uniform spacing ¢ =
1/s; therefore, Py = C;,,;_; reference points are generated. Fig. 4 pre-
sents an example with s =10, m = 3 and Py, = C13 = 66.

3.7. Population initialization

In the canonical MOEA/D, the initial population is typically generated
in a random way, that is, all the solutions of the population are initialized
without any future knowledge. After generating the initial population,
each solution of the population should be assigned a weight vector or
reference line in a random way as well. However, as illustrated in Fig. 5(a),
in the initial population, each solution is not assigned to the nearest
reference line. For example, the solution in the bottom right has been
assigned to the second reference line, which is far away from it. Therefore,
in the following evolutionary process, the random assignment method will
affect the search performance. Algorithm 5 gives the initialization steps.

J.-q. Li et al.

Algorithm 5
P=Initialization(Pg;c).

Swarm and Evolutionary Computation 52 (2020) 100600

Algorithm 5: P=Initialization(Psi,c)

input: population size: Pgizc
output: initialized population P with size equal to Psize

1. randomly generate 5* Pk, solutions and store them in set S

2. evaluate each newly generated solution
3. create a vector named RL with size equal to the number of reference lines
4. for each solution S; in the current population S do
5. for each reference line, compute the acute angle with the solution S; and select the reference line RL,, with
the minimum acute angle.
store the solution Sj in the set corresponding to RL.
6.
7. end
8. for each reference line RL; in RL do
9. compute the number of solutions N; combined with it.
10. sequence each solution in RL; according to its acute angle 4; in non-decreasing order.
11. compute the last value L,; for the j solution S; in RL; as follows:
12. Ly~* Nit 4;
end
13. sequence each solution in the initial population according to their L,; in non-decreasing order.
14. select the first Pgi,e solutions and store them in a new set P

To tackle the problem discussed above, in this study, we propose a
novel population initialization mechanism. The main idea is as follows.
First, we compute the acute angle for each solution with the reference
lines and select the minimum acute angle for each solution. Then, we
compute a weighted sum value for each solution and select Pgj,e solutions
with lower relative values. The detailed steps are described in Algorithm
5. Fig. 5(b) gives the initial population with each solution combined with
the nearest reference line.

3.8. Neighborhood adaption heuristic

Similar to other literatures about the multi-objective optimization
algorithms, such as [49], in the proposed algorithm, we also embed the
neighborhood adaption heuristic. If the neighborhood size is too small,
the selection procedure cannot find enough solutions with different
performances, while if the neighborhood is too large, the selection can
seem to be a random selection from the entire population. Therefore,
both small and large neighborhood sizes have advantages and disad-
vantages considering the convergence and diversity performance values.
To balance their convergence and diversity capabilities, we adapt the
adaption heuristic as follows:

NS; + (Pyize — NSp) x Y otherwise

NS, = (12)

NS, if <t/t mod ﬁ) =0

where, t is the current iteration; NS; represents the neighborhood size for
the tth iteration; Py, is the population size of the current iteration, NS is
the initial neighborhood size, f, is the adaption frequency index.

4. Experimental results

This section discusses the computational experiments used to eval-
uate the performance of the proposed algorithm. Our algorithm was
implemented in C++ on an Intel Core i7 3.4-GHz PC with 16 GB of
memory. To take a fair comparison with the existing heuristics, two types
of problem are tested. The first type is the lot-streaming HFS problems
given in Ref. [36]. The following components of the proposed algorithm
are used to solve these single-objective problems, i.e., the encoding and
decoding heuristic except the sub-lot vector, the exploitation heuristic
discussed in sub-section 3.3, the crossover operator list in sub-section 3.4,
and the problem-specific heuristic described in sub-section 3.5. It should

be noted that, all the components should not consider the variable sub-lot
size constraint because the number of sub-lot in Ref. [36] is of a constant
number for each job.

The second type is the lot-streaming HFS problems with variable sub-
lot size, and the instances are generated based on the lot-streaming HFS
problems given in Ref. [36], where the total numbers of jobs, stages, and
machines are all collected from the published literature. Then, we extend
the instances by adding the due time window constraint, and the energy
consumptions. Meanwhile, four objectives are minimized simulta-
neously. To the best of our knowledge there are none literature consid-
ering the HFS lot-streaming with due time window and variable sub-lots.
To conduct a fair comparison between the proposed algorithm and the
other efficient algorithms, we implement MOEA/D [46], NSGA-II (Chen
et al., 2018) [39], DBEA [52], and EMBO [36]. The reasons for selecting
the above four algorithms are as follows: (1) MOEAD is the canonical
multi-objective algorithm that is based on the decomposition method and
has been verified to be efficient for solving many types of multi-objective
optimization problems; (2) NSGA-II (Chen et al., 2018) is applied for
solving the lot-streaming HFS problems, which have similar features with
the considered problems in this study; (3) DBEA is one of the recently
published algorithms that are also based on decomposition and are
efficient in solving many continuous and discrete multi-objective opti-
mization problems; and (4) EMBO is recently published for the
lot-streaming HFS problems with large scales.

4.1. Experimental instances

The first type of problems is taken from Ref [36] for the lot-streaming
HFS problems, where there are 100 problems which are grouped into ten
types according to the problem scales. The second type of problem is
extended based on the first type of problems, where the number of
sub-lost for each job is not a constant value as in Ref. [36]. The techno-
logical constraints of the second type of problems are given as follows.

e Each job can be divided into 1, 2, 3, 5, 6, or 10 sub-lots and are to be
processed in each stage, where the number of machines is a random
integer number in Refs. [1,5];

e The processing times for each job are set to 30*p;, where p; is the
processing time for each job in Ref. [36];

e For the due time window, the start and end time points for all sub-lots
are set to [0.3 x > 1 1p;,0.5x Y1 pil.

o For each machine, the release time is not considered as a technical
capability;

J.-q. Li et al.

e The transfer times for each of two consecutive stages are generated
randomly in the range of [10,15];

e The setup time for each job is not considered to be a technical
capability.

e The energy consumption is set to one Watt for one time unit.

4.2. Experimental metric

To verify the effectiveness and efficiency of the proposed algorithm,
after 30 independent runs of all compared algorithms, the resulting
Pareto archive sets which contain all the non-dominated solutions ob-
tained by all compared algorithms were collected for performance
comparisons. The average HV (Hypervolume [53]) and IGD (Inverted
Generational Distance [54]) values are used as the performance evalu-
ating indicator.

Let A be a Pareto set obtained by a compared algorithm, the reference
point Ref=(ry, o, ..., 1), for each solution x € A, a hypercube v, is con-
structed with the reference point Ref and the solution x as the diagonal
corners of the hypercube. The HV value of A is a union of all hypercubes,
which is calculated as follows [54]:
HV(A) = V01ume(ULA:‘I vx) 13)

As the calculation of the hypervolume needs the true Pareto front,
which is not available for the realistic production problems considered in
this study. To solve this problem, we perform following steps: first, in
each run, each compared algorithm obtained a Pareto archive set; next,
with these Pareto archive sets and by using the non-dominated sorting
heuristic [56], we can obtain a set of non-dominated solutions as the
“true Pareto front” to calculate the hypervolume and IGD values for each
compared algorithm. Meanwhile, the four objective values of each
compared algorithm are also normalized because different objectives
have different scales.

The indicator IGD is used to measure the average distance from the
“true Pareto front” to A and calculated:

— erP* d(x7 A)

IGD(A, P*) 7

a4

where d(x,A) is the minimum Euclidean distance between x and the
points in A.

Note that the larger the hypervolume value is, the better the perfor-
mance of the algorithm. By contrast, a smaller IGD value indicates better
performance of the MOEA. In addition, since the exact calculation of
hypervolume is computationally extremely intensive, the Monte Carlo
method used in HypE [55] is adopted for estimating the hypervolume,
where 10000 sampling points are used. Moreover, the scheduling prob-
lems with realistic constraints are hard to find the true Pareto front, and
therefore, similar to other literatures, we collect all the results from the
compared algorithms and construct the approximate Pareto front as the
compared values to calculated IGD values.

4.3. Experimental parameters

The stop criterion for each instance is set to be different with the
instance scale, which is u x n x h seconds, where u is the time coefficient
value, n is the total number of jobs, and h is the total number of stages.
Four key parameters are considered, the probability for crossover (p.),
the probability for mutation (py), the exploitation strength (v,), and the
uniform spacing value (o) which is used to compute the weighted vectors
and the population size. According to our preliminary experiments, the
values of the three parameters are set as follows: v, € {5, 10, 15, 20}, pm
€{0.1, 0.2, 0.5, 0.8}, and p. € {0.1, 0.2, 0.5, 0.8}. According to pub-
lished literatures and realistic production requirements, u is generally set
to 30, 50, and 100, respectively.

Similar to Refs. [57-59], we have utilized the design of experiments

14

Swarm and Evolutionary Computation 52 (2020) 100600

(DOE) method for the parameter tuning of the proposed algorithm.
However, rather than using the DOE Taguchi method, we adopted a full
factorial design in which the three parameters were used as factors. The
full factorial design yields a total of 64 distinct combinations of the three
parameters. We performed 10 runs per instance to test the parameter
tuning experiments, which were carried out on a cluster of computers
with Intel Core i7 3.4-GHz PCs and 16 GB of memory. The scaled IGD
values were computed and used as the response variable of the
experiments.

The results were analyzed via a multiway analysis of variance
(ANOVA), where the three parameters are used as the controllable fac-
tors. To evaluate the ANOVA model hypothesis, namely, normality, ho-
moscedasticity and independence, the standardized residuals were
analyzed. A major advantage of the ANOVA technique is that it calculates
the magnitude of the F-ratio, where a large F-ratio indicates that the
analyzed factor has a substantial effect on the response variable.

Table 1 lists the results of the analysis. The results demonstrate that
two of the three parameters are all of the significant factors (p-val-
ue<0.05), i.e., v, and py,. The parameter p,,, with an F-ratio value 12.63,
has a significant effect on the performance of the proposed algorithm.
The parameter p., with an F-ratio value 0.17, has a non-significant effect
compared with the other two parameters. Meanwhile, the factor in-
teractions between the three parameters are non-significant, with p-
values of greater than 0.05. Plots of the 95% confidence intervals for the
scaled IGD values under selections of parameter v, and p, are provided in
Fig. 6. According to Fig. 6 (a), vp=>5 yields a much better scaled IGD
value than the others. According to Fig. 6 (b), pm = 0.5 yields a much
better scaled IGD value than the others. In addition, considering the non-
significant factor p., we select the factor level with the minimum average
value, i.e., p. = 0.2. Fig. 6 (c) also shows that p. = 0.2 yields a much better
performance compared to the zero value, which further verify the effi-
ciency of the crossover heuristic.

In this study, four objectives are considered simultaneously. As dis-
cussed in Section 3.6 and after our detailed experiments, we set 6 = 0.2;
therefore, we obtain Py, = C3 = 56.

4.4. Comparisons of the single-objective lot-streaming HFS problems

To take a fair comparison with the existing heuristics, we also test the
proposed algorithm for solving the lot-streaming HFS problems given in
Ref. [36]. The following components of the proposed algorithm are used
to solve these single-objective problems, i.e., the encoding and decoding
heuristic except the sub-lot vector, the exploitation heuristic discussed in
sub-section 3.3, the crossover operator list in sub-section 3.4, and the
problem-specific heuristic described in sub-section 3.5. It should be
noted that, all the components should not consider the variable sub-lot
size constraint because the number of sub-lot in Ref. [36] is of a con-
stant number for each job.

There are 100 instances, which are grouped into ten types of problems
range from 20 jobs to 100 jobs. For each of the 100 instances with single
objective, the average RPI values are gained across 20 independent
replications similar as Ref [36]. To collect the results and make a detailed
comparison, all the instances are grouped into ten types. The results of
CPU time of u = 30 is selected to test the performance of the proposed
algorithm. The detailed comparisons are list in Table 2, where the first
column tells the instance with two numbers representing the problem
scale, i.e., the first is the number of jobs and the second is the number of
stages. The second column lists the best fitness value for each type of
instance collected by all the compared algorithms. The next six columns
represent the fitness values collected by each of the compared algorithm,
respectively, i.e., PH-MOEAD, EMBO, GA, GAR, DPSO, and DABC. To
make a fair comparison, the experimental results of the six compared
algorithms are collected directly from their literatures. Then, the last six
columns tell the dev values for all of the compared algorithms. The
calculation of the dev values are as follows.

J.-q. Li et al.

Ccomp - Cbest

best

dev= x 100% (15)

where, Ceomp is the fitness value obtained by the compared algorithm,
Chest 1S the best fitness value among the compared algorithms for each
instance. It can be seen from Table 2 that (1) the proposed algorithm
obtained nine better values out of the given ten types of instances, which
is significant better than the second best EMBO algorithm; (2) from the
average performance given in the last line, it can be concluded that the
proposed algorithm is better than the other compared algorithms. For
example, on average, the proposed algorithm obtained an average value
of 0.54, which is obviously better than the second best algorithm EMBO;
(3) from the last six columns we can conclude that, on average PH-
MOEAD obtained a significant better value for the ten types of single-
objective problems. From the comparison results, we can see that the
main component of the proposed algorithm can solve the single-objective
lot-streaming HFS problems efficiently.

To evaluate whether the difference of the two methods is significant,
we perform a multifactor analysis of variance (ANOVA) in which the
compared methods are considered as factors. Fig. 7 shows the means and
the 95% LSD (Least-Significant Difference) intervals for the RPI values of
the six compared methods. It is obviously that there are significant dif-
ferences between the compared methods considering the RPI values.

4.5. Efficiency of the mutation heuristic

To verify the effectiveness of the mutation heuristic discussed in sub-
section 3.3, we code the two algorithms, i.e., PH-MOEAD and PH-
MOEAD-NM, where PH-MOEAD-NM represents the proposed algorithm
with all of the components discussed in section 3 except the mutation
heuristic discussed in sub-section 3.3. The parameters for the two
compared algorithms are set equal. The two compared algorithms are
tested on the same PC and with the same test instances. After 30 inde-
pendent runs, the minimum, average and maximum HV results for each
instance are collected for comparison, which are given in Table 3. In
Table 3, the first column provides the problem scale size, where the two
numbers represent the total number of jobs and stages, respectively. The
following three columns report the maximum, average and minimum HV
values obtained by PH-MOEAD. The next three columns tell the results
obtained by PH-MOEAD-NM. The last two columns give the dev™' values
due to the two compared algorithms, where the calculation of the dev’
value is as follows:

H Vcomp - H Vmax
H Vmax

devt = x 100% (16)

where HVomp is the HV values obtained by the compared algorithm, and
HVyet is the best value for the corresponding instance.

It can be observed from Table 3 that (1) PH-MOEAD obtained eight
better values out of the given ten instances, whereas PH-MOEAD-NM can
only obtain two better values; (2) from the last row in the table, we can
conclude that PH-MOEAD obviously performs better than PH-MOEAD-
NM; and (3) in a nutshell, we can obtain better results after applying
the proposed mutation heuristic. It can be concluded from the compari-
sons that, the proposed mutation heuristic can enhance the exploitation
capabilities of the algorithm.

4.6. Efficiency of the right-shift heuristic

To verify the effectiveness of the right-shift heuristic discussed in sub-
section 3.5, we code the two algorithms, i.e., PH-MOEAD and PH-
MOEAD-NR, where PH-MOEAD-NR represents the proposed algorithm
with all of the components discussed in section 3 except the right-shift
heuristic discussed in sub-section 3.5. The parameters for the two
compared algorithms are set equal, and the results after 30 independent
runs are collected in Table 4.

15

Swarm and Evolutionary Computation 52 (2020) 100600

It can be observed from Table 4 that (1) PH-MOEAD obtained 8
optimal values out of the given 10 types of instances, whereas the PH-
MOEAD-NR obtains two optimal values; (2) from the last row in the
table, we can see that PH-MOEAD obviously performs better than PH-
MOEAD-NR; and (3) in a nutshell, we can obtain better results after
applying the proposed right-shift heuristic.

4.7. Efficiency of the crossover heuristic

To investigate the effectiveness of the crossover heuristic, we also
code the two algorithms, i.e., PH-MOEAD with all components, and PH-
MOEAD-NC with all components except the proposed crossover heuristic
discussed in sub-section 3.4. Table 5 lists the comparison results after
performing 30 independent tests.

It can be observed from Table 5 that (1) PH-MOEAD obtained nine
optimal values out of the given ten groups of instances; (2) from the last
row in the table, we can see that PH-MOEAD obviously performs better
than PH-MOEAD-NC; and (3) from the dev' values list in the last two
columns, we can also conclude that the proposed crossover heuristic can
enhance the performance of the algorithm.

4.8. Comparisons with the presented efficient algorithms

To further verify the performance of the framework of the proposed
algorithm, we select four relevant efficient algorithms to make detailed
comparisons. It should be noted that, the considered HFS lot-streaming
with the due time window and variable sub-lots are of the first time to
be solved, and therefore, all the compared algorithms are recoded to
adapt to solve the considered problems. The main components of all the
compared algorithms described in their literatures are embedded, and
necessary mechanisms are modified for the HFS lot-streaming problems,
such as the encoding and decoding methods.

The results for the comparisons of HV values with MOEA/D, NSGA-II
(Chen et al., 2018), DBEA, and EMBO under u= 30 and u =50 are re-
ported in Tables 6 and 7, respectively. It can be observed from the two
tables that (1) under u = 30, the proposed PH-MOEAD obtained 9 out of
the given 10 groups of instances, which is obviously better than the
second best DBEA algorithm which can only find one optimal value; (2)
under u = 50, the proposed PH-MOEAD also obtained 9 out of the given
10 groups of instances, while the second best DBEA algorithm can only
find one better value; and (3) from the average performance of the two
circumstances, we can conclude that the proposed algorithm shows
competitive performances.

Tables 8 and 9 describe the comparison results for HV and IGD values
under u =100, respectively. From the comparison results for long per-
forming period, we can observe that (1) considering the HV values, the
proposed algorithm obtain all optimal values for all of the ten groups of
instances, i.e., from 20 jobs to 100 jobs, which show the convergence and
diversity performances of the proposed algorithm; (2) comparing the IGD
values, the proposed algorithm obtained six optimal values out of the
given ten groups of instances, which is obviously better that the other
compared algorithms; (3) from the last line in Table 8, we can find that,
on average the proposed algorithm obtained an HV value of 0.622, which
is obviously better than the second-best performer DBEA with a 0.431
overall average HV value; (4) from the last line in Table 9, we can find
that, on average the proposed algorithm obtained an IGD value of 0.20,
which is obviously better than the second-best performer NSGA-II with a
0.28 overall average IGD value; and (5) in a nutshell, the proposed PH-
MOEAD also shows competitive performances for solving the extended
HFS lot-streaming problems considering long running period.

Fig. 8 (a) illustrates the means and the 95% LSD interval for the best
HV values of the five compared algorithms under u = 30, while Fig. 8 (b)
shows the ANOVA results for the best HV values under u=50. The
ANOVA results for the HV and IGD values under u =100 are given in
Fig. 8 (c) and (d). It can be concluded that the proposed algorithm has a
statistically significant competitive performance compared with the

J.-q. Li et al.

other efficient algorithms. Fig. 9 gives the Gantt chart for one of the
obtained solution by the proposed algorithm for one of the 20-5 instance.
It can be concluded from Fig. 9, that the proposed algorithm can solve the
considered problem effectively.

4.9. Comparison analysis

From the experimental comparisons, it can be concluded that the
proposed algorithm is efficient for solving the lot-streaming HFS with
variable sub-lots. The main advantages of the proposed algorithm are as
follows: (1) the proposed crossover which considered solutions with
different sub-lot size can make a solution feasible and enhance the
exploration abilities of the algorithm as well; (2) the proposed mutation
heuristic considering the permutations in the sub-lot size can improve the
performance of the proposed algorithm, and thus enhance the exploita-
tion abilities; and (3) the proposed right-shift heuristics can further
improve the performance of the algorithm.

5. Conclusions

In this study, a problem-specific heuristic based MOEA/D was pro-
posed to solve the hybrid flowshop lot-streaming scheduling problem.
The primary contributions of the proposed algorithm are as follows: (1) a
novel crossover operator is proposed to tackle the case of parent solutions
with different sub-lot vectors; (2) a right-shift heuristic that considers the
problem structure and objective features is advanced to increase the
performance of the proposed algorithm; (3) a population initialization
heuristic is proposed to assign each solution to the nearest reference
vector; (4) a novel mutation heuristic considering the permutations in the
sub-lots is proposed, which can improve the exploitation abilities; and (5)
the experimental results demonstrate the efficiency and effectiveness of
the proposed PH-MOEAD algorithm.

Future works mainly focus on following aspects: (1) to apply the
proposed algorithm to solve the hybrid flowshop rescheduling problem
with other types of constraints, objectives and disruptions; (2) to embed
the data-driven heuristics in the proposed optimization algorithm, and
therefore improve the exploration performance; (3) considering
problem-specific knowledge, apply the proposed algorithm in solving
more realistic optimization problem; (4) to solve the distributed hybrid
flowshop with lot-streaming constraints by using the proposed multi-
objective optimization algorithm; (5) to apply the proposed algorithm
directly to the actual system; (6) to find the features of the scheduling
problem with multi-objective and realistic constraints [60], and there-
fore to calculate the approximate Pareto front boundaries; and (7) the
delay of algorithm allowed by the system is very limited to consider the
time-consuming features of the evolutionary algorithm in solving the
real-time optimization problems, and therefore, the future work will
consider the lot-streaming HFS in the real-time environments [61] and
analyze the influence of algorithm delay on system performance.

Acknowledgements

This research is partially supported by National Science Foundation of
China under Grant 61773192, 61803192, and 61773246, Shandong
Province Higher Educational Science and Technology Program
(J17KZ005), the Open Project of Henan Key Laboratory of Intelligent
Manufacturing of Mechanical Equipment, Zhengzhou University of Light
Industry (IM201906), and major Program of Shandong Province Natural
Science Foundation (ZR2018ZB0419).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.swevo.2019.100600.

16

Swarm and Evolutionary Computation 52 (2020) 100600

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

R. Ruiz, J.A. Vazquez-Rodriguez, The hybrid flow shop scheduling problem, Eur. J.
Oper. Res. 205 (1) (2010) 1-18.

X.L. Zheng, L. Wang, A collaborative multiobjective fruit fly optimization algorithm
for the resource constrained unrelated parallel machine green scheduling problem,
IEEE Trans. Syst. Man. Cy. A. 48 (5) (2018) 790-800.

J.Q. Li, M.X. Song, L. Wang, P.Y. Duan, Y.Y. Han, H.Y. Sang, Q.K. Pan, Hybrid
artificial bee colony algorithm for a parallel batching distributed flow shop problem
with deteriorating jobs, IEEE Trans. Cybernetics (2019), https://doi.org/10.1109/
TCYB.2019.2943606.

H.Y. Sang, Q.K. Pan, J.Q. Li, P. Wang, Y.Y. Han, K.Z. Gao, P. Duan, Effective
invasive weed optimization algorithms for distributed assembly permutation
flowshop problem with total flowtime criterion, Swarm. Evol. Comput. 44 (2)
(2019) 64-73.

J.Q. Li, S.C. Bai, P.Y. Duan, H.Y. Sang, Y.Y. Han, Z.X. Zheng, An improved artificial
bee colony algorithm for addressing distributed flow shop with distance coefficient
in a prefabricated system, Int. J. Prod. Res. 57 (2019) 6922-6942.

D. Lei, M. Li, L. Wang, A two-phase meta-heuristic for multiobjective flexible job
shop scheduling problem with total energy consumption threshold, IEEE Trans.
Cybernetics. (2018), https://doi.org/10.1109/TCYB.2018.2796119.

Q.K. Pan, L. Gao, L. Wang, A multi-objective hot-rolling scheduling problem in the
compact strip production, Appl. Math. Model. 73 (2019) 327-348.

Q.K. Pan, L. Gao, X.Y. Li, M. Framinan, Effective constructive heuristics and meta-
heuristics for the distributed assembly permutation flowshop scheduling problem,
Appl. Soft Comput. 81 (2019) 105492.

Q.K. Pan, L. Gao, L. Wang, J. Liang, X.Y. Li, Effective heuristics and metaheuristics
to minimize total flowtime for the distributed permutation flowshop problem,
Expert Syst. Appl. 124 (2019) 309-324.

J.Q. Li, Q.K. Pan, K. Mao, A hybrid fruit fly optimization algorithm for the realistic
hybrid flowshop rescheduling problem in steelmaking systems, IEEE Trans. Autom.
Sci. Eng. 13 (2016) 932-949.

S.P. Yu, T.Y. Chai, Y. Tang, An effective heuristic rescheduling method for
steelmaking and continuous casting production process with multirefining modes,
IEEE Trans. Syst. Man. Cy. A. 46 (2016) 1675-1688.

J.Q. Li, Q.K. Pan, P.Y. Duan, An improved artificial bee colony algorithm for solving
hybrid flexible flowshop with dynamic operation skipping, IEEE Trans. Cybernetics.
46 (2016) 1311-1324.

K.K. Peng, Q.K. Pan, L. Gao, B. Zhang, X.F. Pang, An Improved Artificial Bee Colony
algorithm for real-world hybrid flowshop rescheduling in Steelmaking-refining-
Continuous Casting process, Comput. Ind. Eng. 122 (2018) 235-250.

H. Liu, B. Xu, D. Lu, G. Zhang, A path planning approach for crowd evacuation in
buildings based on improved artificial bee colony algorithm, Appl. Soft Comput. 68
(2018) 360-376.

A.A. Kalir, S.C. Sari, Evaluation of the potential benefits of lot streaming in flow-
shop systems, Int. J. Prod. Econ. 66 (2000) 131-142.

J.H. Chang, H.N. Chiu, A comprehensive review of lot streaming, Int. J. Prod. Res.
43 (2005) 1515-1536.

C.T. Tseng, C.J. Liao, A discrete particle swarm optimization for lot-streaming
flowshop scheduling problem, Eur. J. Oper. Res. 191 (2008) 360-373.

S. Marimuthu, S.G. Ponnambalam, N. Jawahar, Evolutionary algorithms for
scheduling m-machine flow shop with lot streaming, Robot. Comput. Integr. Manuf.
24 (2008) 125-139.

S. Marimuthu, S.G. Ponnambalam, N. Jawahar, Threshold accepting and Ant-colony
optimization algorithms for scheduling m-machine flow shops with lot streaming,
J. Mater. Process. Technol. 209 (2009) 1026-1041.

S.H. Yoon, J.A. Ventura, An application of genetic algorithms to lot streaming flow
shop scheduling, IIE Trans. 34 (2002) 779-787.

Q.K. Pan, R. Ruiz, An estimation of distribution algorithm for lot-streaming flow
shop problems with setup times, Omega 40 (2012) 166-180.

D. Davendra, R. Senkerik, I. Zelinka, M. Pluhacek, M. Bialic-Davendra, Utilising the
chaos-induced discrete self-organizing migrating algorithm to solve the lot-
streaming flowshop scheduling problem with setup time, Soft. Comput. 18 (2014)
669-681.

H. Sang, L. Gao, X. Li, An iterated local search algorithm for the lot-streaming flow
shop scheduling problem, Asia, Pac. J. Oper. Res. 31 (2014) 1450045.

H. Sang, Q.K. Pan, P.Y. Duan, J.Q. Li, An effective discrete invasive weed
optimization algorithm for lot-streaming flowshop scheduling problems, J. Intell.
Manuf. 29 (6) (2018) 1337-1349.

G. Vijay Chakaravarthy, S. Marimuthu, A.N. Sait, Performance evaluation of
proposed differential evolution and particle swarm optimization algorithms for
scheduling m-machine flow shops with lot streaming, J. Intell. Manuf. 24 (2013)
175-191.

G.V. Chakaravarthy, S. Marimuthu, S.G. Ponnambalam, G. Kanagaraj, Improved
sheep flock heredity algorithm and artificial bee colony algorithm for scheduling m-
machine flow shops lot streaming with equal size sub-lot problems, Int. J. Prod. Res.
52 (2014) 1509-1527.

T. Meng, Q.K. Pan, J.Q. Li, H.Y. Sang, An improved migrating birds optimization for
an integrated lot-streaming flow shop scheduling problem, Swarm Evolut. Comput.
38 (2018) 64-78.

Y.Y. Han, J.Q. Li, D.W. Gong, H.Y. Sang, Multi-objective migrating birds
optimization algorithm for stochastic lot-streaming flow shop scheduling with
blocking, IEEE Access 7 (2018) 5946-5962.

O. Masmoudi, A. Yalaoui, Y. Ouazene, H. Chehade, Multi-item capacitated lot-sizing
problem in a flow-shop system with energy consideration, IFAC-PapersOnLine 49
(2016) 301-306.

https://doi.org/10.1016/j.swevo.2019.100600
https://doi.org/10.1016/j.swevo.2019.100600
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref1
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref1
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref1
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref1
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref2
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref2
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref2
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref2
https://doi.org/10.1109/TCYB.2019.2943606
https://doi.org/10.1109/TCYB.2019.2943606
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref4
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref4
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref4
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref4
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref4
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref5
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref5
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref5
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref5
https://doi.org/10.1109/TCYB.2018.2796119
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref7
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref7
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref7
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref8
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref8
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref8
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref9
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref9
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref9
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref9
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref10
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref10
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref10
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref10
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref11
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref11
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref11
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref11
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref12
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref12
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref12
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref12
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref13
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref13
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref13
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref13
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref14
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref14
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref14
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref14
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref15
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref15
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref15
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref16
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref16
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref16
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref17
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref17
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref17
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref18
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref18
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref18
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref18
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref19
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref19
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref19
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref19
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref20
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref20
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref20
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref21
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref21
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref21
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref22
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref22
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref22
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref22
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref22
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref23
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref23
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref24
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref24
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref24
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref24
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref25
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref25
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref25
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref25
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref25
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref26
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref26
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref26
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref26
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref26
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref27
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref27
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref27
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref27
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref28
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref28
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref28
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref28
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref29
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref29
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref29
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref29

J.-q. Li et al.

[30]

[31]
[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

H. Tsubone, M. Ohba, T. Uetake, The impact of lot sizing and sequencing on
manufacturing performance in a two-stage hybrid flow shop, Int. J. Prod. Res. 34
(1996) 3037-3053.

W. Zhang, J. Liu, R.J. Linn, Model and heuristics for lot streaming of one job in m-1
hybrid flowshops, Int. J. Oper. Quant. Manag. 9 (2003) 49-64.

W. Zhang, C. Yin, J. Liu, R.J. Linn, Multi-job lot streaming to minimize the mean
completion time in m-1 hybrid flowshops, Int. J. Prod. Econ. 96 (2005) 189-200.
J. Liu, Single-job lot streaming in m+1 two-stage hybrid flowshops, Eur. J. Oper.
Res. 187 (2008) 1171-1183.

B. Naderi, M. Yazdani, A model and imperialist competitive algorithm for hybrid
flow shops with sublots and setup times, J. Manuf. Syst. 33 (2014) 647-653.

M. Cheng, S. C Sarin, S. Singh, Two-stage, single-lot, lot streaming problem for a 1+
2 hybrid flow shop, J. Glob. Optim. 66 (2016) 263-290.

B. Zhang, Q.K. Pan, L. Gao, X.L. Zhang, H.Y. Sang, J.Q. Li, An effective modified
migrating birds optimization for hybrid flowshop scheduling problem with lot
streaming, Appl. Soft Comput. 52 (2017) 14-27.

M. Nejati, I. Mahdavi, R. Hassanzadeh, N. Mahdavi-Amiri, Lot streaming in a two-
stage assembly hybrid flow shop scheduling problem with a work shift constraint,
Journal of Industrial and Production Engineering 33 (2016) 459-471.

H. Zohali, B. Naderi, M. Mohammadi, V. Roshanaei, Reformulation, linearization,
and a hybrid iterated local search algorithm for economic lot-sizing and sequencing
in hybrid flow shop problems, Comput. Oper. Res. 104 (2019) 127-138.

T.L. Chen, C.Y. Cheng, Y.H. Chou, Multi-objective genetic algorithm for energy-
efficient hybrid flow shop scheduling with lot streaming, Ann. Oper. Res. (2018),
https://doi.org/10.1007/s10479-018-2969-x.

R. Wang, S. Lai, G. Wu, L. Xing, L. Wang, H. Ishibuchi, Multi-clustering via
evolutionary multi-objective optimization, Inf. Sci. 450 (2018) 128-140.

J.Q. Li, Q.K. Pan, M. Tasgetiren, A discrete artificial bee colony algorithm for the
multi-objective flexible job-shop scheduling problem with maintenance activities,
Appl. Math. Model. 38 (2014) 1111-1132.

R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, T. Zhang, Localized weighted sum method
for many-objective optimization, IEEE Trans. Evol. Comput. 22 (1) (2018) 3-18.
J.Q. Li, Q.K. Pan, S.X. Xie, An effective shuffled frog-leaping algorithm for multi-
objective flexible job shop scheduling problems, Appl. Math. Comput. 218 (2012)
9353-9371.

S.Y. Wang, L. Wang, An estimation of distribution algorithm-based memetic
algorithm for the distributed assembly permutation flow-shop scheduling problem,
IEEE Trans. Syst. Man. Cy. A. 46 (2016) 139-149.

J. Sun, Z. Miao, D. Gong, X. Zeng, J. Li, G. Wang, Interval multiobjective
optimization with memetic algorithms, IEEE Trans. Cybernetics. (2019), https://
doi.org/10.1109/TCYB.2019.2908485.

17

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

Swarm and Evolutionary Computation 52 (2020) 100600

Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on
decomposition, IEEE Trans. Evol. Comput. 11 (2007) 712-731.

Z. Wang, Y.S. Ong, J. Sun, A. Gupta, Q. Zhang, A generator for multiobjective test
problems with difficult-to-approximate Pareto front boundaries, IEEE Trans. Evol.
Comput. (2018), https://doi.org/10.1109/tevc.2018.2872453.

Z. Wang, Y.S. Ong, H. Ishibuchi, On scalable multiobjective test problems with
hardly dominated boundaries, IEEE Trans. Evol. Comput. 23 (2) (2019) 217-231.
Z. Wang, Q. Zhang, A. Zhou, M. Gong, L. Jiao, Adaptive replacement strategies for
MOEA/D, IEEE Trans. Cybernetics 46 (2) (2016) 474-486.

K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many-objective optimization
algorithm based on dominance and decomposition, IEEE Trans. Evol. Comput. 19
(2015) 694-716.

1. Das, J.E. Dennis, Normal-boundary intersection: a new method for generating the
Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim. 8
(1998) 631-657.

M. Asafuddoula, T. Ray, R. Sarker, A decomposition-based evolutionary algorithm
for many objective optimization, IEEE Trans. Evol. Comput. 19 (2015) 445-460.
E. Zitzler L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach, IEEE Trans. Evol. Comput. 3 (1999)
257-271.

P. Bosman D. Thierens, The balance between proximity and diversity in
multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput. 7 (2003)
174-188.

J. Bader, E. Zitzler, HypE: an algorithm for fast hypervolume-based many-objective
optimization, Evol. Comput. 19 (2011) 45-76.

K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints, IEEE Trans. Evol. Comput. 18 (4) (2014) 577-601.

R. Ruiz, T. Stutzle, A simple and effective iterated greedy algorithm for the
permutation flowshop with scheduling problem, Eur. J. Oper. Res. 177 (3) (2007)
2033-2049.

I. Ribas, R. Companys, X. Tort-Martorell, An iterated greedy algorithm for the
flowshop scheduling problem with blocking, Omega 39 (3) (2011) 293-301.

R. Rui, Q.K. Pan, B. Naderi, Iterated Greedy methods for the distributed
permutation flowshop scheduling problem, Omega 83 (2019) 213-222.

Y. Han, D. Gong, X. Sun, A discrete artificial bee colony algorithm incorporating
differential evolution for flow shop scheduling problem with blocking, Eng. Optim.
47 (2015) 927-946.

H. Luo, J. Fang, G. Huang, Real-time scheduling for hybrid flowshop in ubiquitous
manufacturing environment, Comput. Ind. Eng. 84 (2015) 12-23.

http://refhub.elsevier.com/S2210-6502(19)30039-2/sref30
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref30
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref30
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref30
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref31
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref31
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref31
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref32
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref32
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref32
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref33
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref33
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref33
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref33
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref34
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref34
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref34
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref35
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref35
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref35
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref36
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref36
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref36
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref36
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref37
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref37
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref37
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref37
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref38
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref38
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref38
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref38
https://doi.org/10.1007/s10479-018-2969-x
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref40
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref40
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref40
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref41
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref41
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref41
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref41
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref42
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref42
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref42
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref43
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref43
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref43
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref43
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref44
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref44
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref44
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref44
https://doi.org/10.1109/TCYB.2019.2908485
https://doi.org/10.1109/TCYB.2019.2908485
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref46
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref46
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref46
https://doi.org/10.1109/tevc.2018.2872453
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref48
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref48
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref48
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref49
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref49
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref49
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref50
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref50
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref50
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref50
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref51
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref51
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref51
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref51
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref52
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref52
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref52
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref53
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref53
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref53
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref53
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref54
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref54
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref54
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref54
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref55
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref55
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref55
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref56
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref56
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref56
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref56
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref57
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref57
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref57
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref57
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref58
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref58
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref58
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref59
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref59
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref59
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref60
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref60
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref60
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref60
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref61
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref61
http://refhub.elsevier.com/S2210-6502(19)30039-2/sref61

	Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots
	1. Introduction
	2. Problem description
	3. The proposed algorithm
	3.1. Framework of the proposed algorithm
	3.2. Encoding
	3.3. Mutation heuristic
	3.4. Crossover heuristic
	3.5. Right-shift heuristic
	3.6. Reference regions generalization
	3.7. Population initialization
	3.8. Neighborhood adaption heuristic

	4. Experimental results
	4.1. Experimental instances
	4.2. Experimental metric
	4.3. Experimental parameters
	4.4. Comparisons of the single-objective lot-streaming HFS problems
	4.5. Efficiency of the mutation heuristic
	4.6. Efficiency of the right-shift heuristic
	4.7. Efficiency of the crossover heuristic
	4.8. Comparisons with the presented efficient algorithms
	4.9. Comparison analysis

	5. Conclusions
	Acknowledgements
	Appendix A. Supplementary data
	References

