
Knowledge-Based Systems 200 (2020) 106032

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

An improved Jaya algorithm for solving the flexible job shop
scheduling problemwith transportation and setup times
Jun-qing Li a,b,∗, Jia-wen Deng a, Cheng-you Li a, Yu-yan Han a, Jie Tian b, Biao Zhang a,
Cun-gang Wang a

a College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
b School of Information Science and Engineering, Shandong Normal University, Jinan, 25014, PR China

a r t i c l e i n f o

Article history:
Received 3 January 2020
Received in revised form 11 April 2020
Accepted 13 May 2020
Available online 18 May 2020

Keywords:
Flexible job shop
Improved Jaya algorithm
Energy consumption
Transportation time
Setup time

a b s t r a c t

Flexible job shop scheduling has been widely researched due to its application in many types
of fields. However, constraints including setup time and transportation time should be considered
simultaneously among the realistic requirements. Moreover, the energy consumptions during the
machine processing and staying at the idle time should also be taken into account for green production.
To address this issue, first, we modeled the problem by utilizing an integer programming method,
wherein the energy consumption and makespan objectives are optimized simultaneously. Afterward,
an improved Jaya (IJaya) algorithm was proposed to solve the problem. In the proposed algorithm,
each solution is represented by a two-dimensional vector. Consequently, several problem-specific local
search operators are developed to perform exploitation tasks. To enhance the exploration ability, a SA-
based heuristic is embedded in the algorithm. Meanwhile, to verify the performance of the proposed
IJaya algorithm, 30 instances with different scales were generated and used for simulation tests. Six
efficient algorithms were selected for detailed comparisons. The simulation results confirmed that the
proposed algorithm can solve the considered problem with high efficiency.

© 2020 Published by Elsevier B.V.

1. Introduction

In realistic industrial production systems, scheduling problem
has been considered as the key issue for production efficiency.
The flexible job shop scheduling problem (FJSP) [1], as a complex
version of the scheduling problem, has been investigated for
many years. In realistic production systems such as the steelmak-
ing system, a FJSP problem can be modeled in several phases.
Fig. 1 gives the illustration of the typical steelmaking system,
where there are three main phases, i.e., the molten iron schedul-
ing, the steelmaking casting, and the hot-rolling phases. In each
phase, charges or jobs have different routes, and the machine
assignment for processing these charges is also flexible for indus-
trial constrains. However, the flexibility makes the problem more
complex than the canonical scheduling problem.

In a classical FJSP, there are n jobs to be processed on m
machines. Each job has ni (i = 1, 2,. . . , n) number of operations.
Each operation should select one available machine from a set of
candidate machines, such that each operation can be processed
on only one machine at a time, and one machine can process only

∗ Corresponding author at: College of Computer Science, Liaocheng
University, Liaocheng 252059, PR China.

E-mail address: lijunqing@lcu-cs.com (J.-q. Li).

one operation. Preemption is not permitted; that is, the machine
cannot be occupied until the assigned operation is completed.
Consequently, the addition to select the available machine causes
the FJSP to be more difficult compared to the flowshop, hybrid
flowshop, and job shop scheduling problems [1,2]. To solve the
FJSPs, many researchers have utilized different types of algo-
rithms. Kacem et al. applied the genetic algorithm (GA), where
the solution quality is enhanced by genetic manipulations [2].
Jensen considered the robust or flexible solutions by using the
GA algorithm [3]. Ho et al. proposed a learnable genetic archi-
tecture by considering the evolution and learning interaction [4].
Combining the features of the GA and the variable neighbor-
hood descent algorithm, Gao designed a hybrid algorithm for the
problem [5]. Zhang et al. designed a hybrid algorithm based on
the particle swarm optimization algorithm for the multi-objective
FJSPs [6]. The other efficient algorithms for the FJSPs include the
knowledge-based ant colony optimization (ACO) algorithm [7],
the artificial bee colony (ABC) algorithm [8,9], the memetic algo-
rithm [10], the harmony search algorithm [11], and the particle
swarm optimization (PSO) [12]. In addition to the population-
based algorithm, the local search-based algorithm also exhibits
an efficient performance for solving the FJSPs. Cruz-Chávez et al.
presented an accelerated simulated annealing (ASA) algorithm
with a partial scheduling mechanism [13]. Aqel et al. proposed

https://doi.org/10.1016/j.knosys.2020.106032
0950-7051/© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.knosys.2020.106032
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2020.106032&domain=pdf
mailto:lijunqing@lcu-cs.com
https://doi.org/10.1016/j.knosys.2020.106032


2 J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032

Fig. 1. Scheduling problem in a typical steelmaking system.

a modified iterated greedy (IG) algorithm, which includes two
phases, and each phase is used to solve a subproblem of the
FJSP [14]. From the outlined literature on FJSPs, it is evident that
many meta-heuristics have been utilized to solve the complex
optimization scheduling problem. However, most of the current
literature have not considered the realistic constraints of the
problem.

The most practical realistic constrains in the scheduling prob-
lem include machine breakdown, fuzzy processing time, new job
arrival, resource constraint, transportation time, and the opera-
tion sequence setup time. The machine breakdown constraint has
been researched for other typical scheduling problems, such as
flowshop and job shop. For the FJSPs, Li et al. designed a discrete
ABC algorithm with maintenance activities [15]. Ahmadi et al.
considered FJSPs under random machine breakdown by evolu-
tionary algorithms [16]. For the fuzzy processing time constraint,
Xu et al. designed an effective teaching–learning-based optimiza-
tion (TLBO) algorithm [17]. Jamrus et al. developed a hybrid PSO
combined with genetic operators for semiconductor manufactur-
ing [18]. For the new job arrival constraints, Gao et al. utilized
a discrete Jaya (DJaya) algorithm to optimize a multi-objective
FJSPs [19]. Gao and Pan investigated a shuffled multi-swarm
micro-migrating birds optimizer for a multi-resource-constrained
FJSP [20].

For the transportation time constraint, Zhang et al. devel-
oped a hybrid algorithm combining GA with tabu search (TS)
procedure for flexible job shop scheduling with transportation
constraints and bounded processing times [21]. Dai et al. uti-
lized a multi-objective optimization for energy-efficient FJSP with
transportation constraints [22]. Liu et al. designed an integrated
genetic algorithm and glowworm swarm optimization (GA-GSO)
algorithm for the FJSPs of the crane transportation process [23].
For the setup time constraint, Shen et al. designed a TS algo-
rithm with specific neighborhood functions and a diversification
structure [24]. Rossi et al. studied the FJSP with routing flexibil-
ity and separable setup times utilizing the ACO algorithm [25].
On the other hand, the energy-efficient objective has also been
studied for the scheduling problem. Lei et al. studied the FJSPs
with energy consumption minimization, employing a two-phase
meta-heuristic (TPM) method, based on the imperialist competi-
tive algorithm and the variable neighborhood search (VNS) [26].
Wang et al. considered a two-stage optimization method for
energy-saving FJSPs [27]. Mokhtari and Hasani minimized the
total energy cost of both production and maintenance operations
in the FJSP by using the evolutionary algorithm [28]. Wu and Sun
developed a green scheduling heuristic [29]. The mathematical
models for the energy-aware FJSPs are investigated in [30,31]. In
a nutshell, the FJSP is a complex optimization problem, and real-
istic constraints will make it more complex; however, currently
there are only a few publications which consider these realistic
constraints simultaneously.

Very recently, the Jaya algorithm was proposed by Rao to solve
the constrained and unconstrained optimization problems [32].
Ever since, it has been applied to solve engineering optimiza-
tion [33], maximum power point tracking [34], thermal devices
optimization problem [35], multi-area interconnected power sys-
tem [36], truss structure layout optimization problem [37], power
quality improvement problem [38], and parameters identifica-
tion [39,40]. Compared to other optimization algorithms such
as ABC [41–43], IG [44,45] and Chemical-reaction optimization
(CRO) algorithm [46], the Jaya algorithm is efficient and easy
to be implemented. Its first step is to form a random initial
population; afterward, the best and worst solutions are extracted
from the initial population and are employed to update other
solutions for the next iteration. The best and worst solutions have
to be updated at each iteration. In the course of optimization,
only the population size and the maximum number of function
evaluations are predefined.

From the analysis of the state art of the typical constraints
in FJSP, it can be observed that the transportation time and
setup time constraints exist in many types of realistic industrial
application, such as the steelmaking casting, and the hot-rolling
in steel process system. However, currently there are only a
few publications which consider one or two realistic constraints
simultaneously. Based on the efficiency performance of the Jaya
algorithm and the problem features of the realistic FJSPs, we
propose an improved Jaya (IJaya) that targets the transportation
and setup time FJSPs. The main contributions of this study are as
follows:

• The FJSP is defined wherein the transportation and
sequence-based setup time constraints are considered.

• The energy consumption and makespan objectives are opti-
mized simultaneously.

• Seven different types of local search approaches are pro-
posed to enhance the exploitation abilities.

• SA-based acceptation criterion is embedded in the proposed
algorithm to enhance the exploration abilities.

The rest of this paper is organized as follows. Section 2 briefly
describes the problem. Next, Section 3 illustrates the framework
of the canonical Jaya algorithm. The proposed algorithm, which
embeds the problem-specific heuristics, is presented in Section 4.
Section 5 illustrates the experimental results and makes com-
parisons to the performance results of other algorithms from
the existing literature to demonstrate the superiority of the pro-
posed algorithm. Finally, the last section presents the concluding
remarks and future research directions.



J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032 3

2. Problem description

2.1. Problem description

We consider the realistic production procedure in a typical
steelmaking industry, which commonly has five stages or pro-
cesses. The first process is to load the molten iron into the torpedo
car (TPC), and then the TPC should be processed through the
second and third refining stages. The fourth stage is to dump the
molten iron, and the last stage is the continuous casting process.

2.2. Problem formulation

In this study, we consider a FJSP with a sequence-based setup
time and transportation constraints; the detailed assumptions are
given as follows:

(1) Assumptions

• The predefined processing time of a positive integer and the
operation is deterministic.

• All the machines are available at time zero and remain
continuously available during the entire production.

• The transportation time for each job from one machine to
the consecutive machine is taken into account.

• The effect of the setup time for each pair of consecutive
processing operations on the same machine is considered.

• The processing of one job should be started after the com-
pletion time of the predecessor job while considering the
setup time on the same machine.

• The processing of each operation should be started after the
completion time of the predecessor operation of the same
job while considering the transportation time between the
two processing machines.

• Sufficient buffers are always available between any two
continuous machines.

(2) Notation

Indices and parameters

• n: Number of jobs.
• m: Number of machines.
• g: Number of operations.
• j, h: Index of jobs.
• i, k: Index of the machines.
• u, z: Index of operations.
• r: Index of processing positions on the machine.
• nj: Number of operations belonging to job j.
• Oj,u: The uth operation of job j.
• pj,u,i: The processing time of the uth operation of job j on

the machine i.
• tj,k,i: Transportation time of job j from machine k to i.
• sj,h,i: Setup time of job j and h on the machine i.
• ej,u,i: A binary value which is set to 1 if Oj,u can be processed

on the machine i.
• E i

busy: The unit energy consumption for the processing task
of the machine i.

• E i
idle: The unit energy consumption the machine i staying at

the idle state [47].
• Ebusy: Total energy consumptions of the machine processing.
• Eidle: Total energy consumptions of machine staying at the

idle state.
• L: A large positive number.
• ω: The weight value for the two objective values.

Decision variables:

• xj,u,i,r : A binary value that is set to 1 if Oj,u is processed at
the rth position of the machine i; otherwise, xj,u,i,r is set to
0.

• yj,u,i,k: A binary value that is set to 1 if Oj,u is processed on
machine i and Oj,u−1 machine k; otherwise, yj,u,i,k is set to 0.

• Cj,u: The completion time of Oj,u.
• MCi,r : The completion time of the operation processing at

the rth position of the machine i.

The main mathematical model for the considered problem is
given as follows:

min ω × Cmax + (1 − ω) × (Ebusy + Eidle)

Cmax ≥ Cj,nj j ∈ {1, 2, . . . , n} (1)

Ebusy =

m∑
i=1

(E i
busy ×

n∑
j=1

nj∑
u=1

m∑
k=1

(yj,u,i,k · pj,u,i)) (2)

Eidle =

m∑
i=1

(E i
idle × (

n∑
j=1

m∑
k=1

yj,nj,i,k × Cj,nj −

n∑
j=1

m∑
k=1

yj,1,i,k

× Cj,1 − pj,1,i −
n∑

j=1

nj∑
u=1

m∑
k=1

yj,u,i,k × pj,u,i)) (3)

m∑
i=1

m∑
k=1

yj,u,i,k = 1 j ∈ {1, 2, . . . , n}; u ∈ {2, . . . , nj} (4)

m∑
i=1

yj,1,i,0 = 1 j ∈ {1, 2, . . . , n} (5)

m∑
k=1

yj,u,i,k ≤ ej,u,i j ∈ {1, 2, . . . , n}; u ∈ {2, . . . , nj};

i ∈ {1, 2, . . . ,m} (6)

yj,1,i,0 ≤ ej,1,i j ∈ {1, 2, . . . , n}; i ∈ {1, 2, . . . ,m} (7)

yj,u,i,k ≤

m∑
f=1

yj,u−1,k,f j ∈ {1, 2, . . . , n}; u ∈ {3, . . . , nj};

i ∈ {1, 2, . . . ,m}; k ∈ {1, 2, . . . ,m} (8)

yj,2,i,k ≤ yj,1,k,0, j ∈ {1, 2, . . . , n}; i ∈ {1, 2, . . . ,m};

k ∈ {1, 2, . . . ,m} (9)
m∑
i=1

g∑
r=1

xj,u,i,r = 1, j ∈ {1, 2, . . . , n}; u ∈ {1, 2, . . . , nj} (10)

n∑
j=1

nj∑
u=1

xj,u,i,r ≤ 1 i ∈ {1, 2, . . . ,m}; r ∈ {1, 2, . . . , g} (11)

MCi,r ≤ Cj,u + L · (1 − xj,u,i,r ) j ∈ {1, 2, . . . , n};

u ∈ {1, 2, . . . , nj}; i ∈ {1, 2, . . . ,m}; r ∈ {1, 2, . . . , g} (12)

Cj,u ≤ MCi,r + L · (1 − xj,u,i,r ) j ∈ {1, 2, . . . , n};

u ∈ {1, 2, . . . , nj}; i ∈ {1, 2, . . . ,m}; r ∈ {1, 2, . . . , g} (13)

Cj,u + tj,k,i ≤ Cj,u+1 − pj,u,i + L · (1 − yj,u,i,k) j ∈ {1, 2, . . . , n};

u ∈ {1, 2, . . . , nj − 1}; i ∈ {1, 2, . . . ,m}; k ∈ {1, 2, . . . ,m} (14)
n∑

j=1

nj∑
u=1

xj,u,i,r ≥

n∑
h=1

nh∑
z=1

xh,z,i,r+1 i ∈ {1, 2, . . . ,m};

r ∈ {1, 2, . . . , g − 1} (15)



4 J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032

MCi,r +

n∑
h=1,h̸=j

nh∑
z=1

sh,j,i · xh,z,i,r ≤ MCi,r+1 − pj,u,i

+ L · (1 − xj,u,i,r+1) (16)
j ∈ {1, 2, . . . , n}; u ∈ {1, 2, . . . , nj}; i ∈ {1, 2, . . . ,m};

r ∈ {1, 2, . . . , g − 1}

MCi,r ≥

n∑
j=1

nj∑
u=1

pj,u,i · xj,u,i,r i ∈ {1, 2, . . . ,m};

r ∈ {1, 2, . . . , g} (17)

xj,u,i,r , yj,u,i,k ∈ {0, 1} (18)

The objective is to minimize the weighted sum of two objec-
tives, i.e., the maximum completion time of all operations and the
sum of energy consumptions, including the machine processing
energy and the energy of machine staying at the idle state.

Constraints (4) and (5) ensure that each operation of each job
should be assigned to only one available machine. Constraints
(6) and (7) guarantee that the assigned machine for each oper-
ation must be selected from the given eligible set of machines.
Constraints (8) and (9) enforce the processing relation of each
operation between the current machine and the immediate suc-
cessive machine. Constraint (10) ensures that each operation
can select only one processing positions on the candidate ma-
chines. Constraint (11) enforces that each processing position on
any machine can be occupied by only one operation at a time,
that is, it is not permitted to assign more than one operation
to one processing position at a time. Constraints (12) and (13)
create the relationship between the completion times of the
operations and the assigned machine positions. Constraint (14)
ensures that the start time of the current operation must be
greater than the sum of the following values, i.e., the completion
time of the predecessor operation, and the transportation time
between the consecutive machines. Constraint (15) enforces that
the processing positions on each machine should be assigned
from left to right, that is, the machine processing position skip
is not permitted. Constraint (16) ensures that start time of the
current operation must be greater than the sum of the following
values, i.e., the completion time of the operation at the prede-
cessor processing position on the same machine, and the setup
time between the two jobs. Constraint (17) guarantees that the
completion time of each operation should not be less than its pro-
cessing time. Constraint (18) enforces the range of the decision
variables.

2.3. Problem illustration

To aid comprehension of our target problem, an example of
FJSPs is selected where there are three jobs to be processed
on three machines. Table 1 gives the processing times of each
operation on each machine. Tables 2 and 3 list the transportation
times and the sequence-based setup times, respectively. Fig. 2
gives the corresponding Gantt chart, where the processing time
for each job is represented by a rectangle labeled with the job
number and the operation number. For example, on machine
M3, the first operation to be processed is the O1,1, and the last
operation to be processed is O2,3.

The setup time between two jobs is represented by a rectangle
filled with green colors. For example, on machine M3, the setup
time between O1,2 and O2,2 is labeled with ‘‘1-2’’, which illustrates
the setup time between the two consecutive jobs J1 and J2. The
transportation time is represented by a rectangle with blue colors.
For example, after completing the first operation O2,1, the job J2
should be transported from M2 to M3, which is illustrated by a
rectangle labeled with ‘‘2’’ between M2 and M3.

Table 1
The processing times of each operation on each machine.
Jobs Operations Machines

M1 M2 M3

Job 1
O1,1 11 16 17
O1,2 15 9 6
O1,3 18 13 –

Job 2
O2,1 – 11 15
O2,2 16 – 19
O2,3 15 12 13

Job 3
O3,1 15 – 23
O3,2 – 9 9
O3,3 13 12 –

Table 2
The transportation times between the machines.
Machines Machines

M1 M2 M3

M1 0 12 20
M2 12 0 8
M3 20 8 0

Table 3
The setup times between the operations on each machine.
Machines Jobs Jobs

J1 J2 J3

M1

J1 0 6 12
J2 9 0 5
J3 14 9 0

M2

J1 0 13 13
J2 7 0 9
J3 10 10 0

M3

J1 0 6 12
J2 6 0 6
J3 10 7 0

Fig. 2. The Gantt chart of the FJSP with the transportation times and setup
times. . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3. The canonical Jaya algorithm

The Jaya algorithm, which can be seen as an extension of
the TLBO algorithm, was proposed by Rao et al. in 2016. In the
canonical Jaya algorithm, the detailed steps are as follows:

Step 1. The initialization phase: Randomly generates an initial
population.



J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032 5

Step 2. Perform the steps 3–4 until the stop condition is
satisfied.

Step 3. Improve each solution by using the following formula-
tion:

xj,k,t ′ = xj,k.t + rand1,j,t × (xj,best,t −
⏐⏐xj,k.t ⏐⏐) − rand2,j,t

× (xj,worst,t −
⏐⏐xj,k.t ⏐⏐) (19)

where xj,k.t is the jth variable for the kth solution during the
tth iteration; xbest and xworst are the best and worst solutions
found so far; rand1,j,t and rand2,j,t are the uniformly distributed
random number in the range [0,1],

⏐⏐xj,k.t ⏐⏐ is the absolute value of
the solution xj,k.t . The component +rand1,j,t × (xj,best,t −

⏐⏐xj,k.t ⏐⏐)
let each solution learn from the best solution, while the second
component −rand2,j,t ×(xj,worst,t −

⏐⏐xj,k.t ⏐⏐) let the solution far from
the worst solution.

Step 4. Evaluate xj,k,t ′, and replace xj,k.t if xj,k,t ′ is better than
xj,k.t .

Step 5. Output the best solution.

4. The proposed algorithm

In this section, a stepwise procedure is given for the im-
plementation of the IJaya algorithm. A detailed description is
provided in Algorithm 1.

4.1. Solution representation and decoding strategy

To record the processing sequence and the machine assign-
ment information, each solution is represented by two vectors,
i.e., the routing vector and the scheduling vector. The scheduling
vector reports the processing sequence for each operation, where
each operation is represented by the job number, while the
routing vector is employed to record the machine assignment for
the corresponding positions of operations. It should be noted that
each job j will appear nj times in each of the two vectors, and the
length of the two vectors are the same and equal to

∑n
j=1 nj.

Fig. 3 gives a solution representation example, where there are
three jobs and three machines. The total number of operations
of these three jobs is {3,3,3}, respectively. The scheduling vector
indicates that the first to be scheduled is the first operation of
J1 and then the first operation of J2, and the last one is the last
operation of J3. The routing vector indicates the assigned machine
for the corresponding position of operations. For example, the
first operation of J1 is assigned to the machine M3, and the last
operation of J3 is scheduled on M1.

The decoding procedure for each solution should complete the
following tasks: (1) decide the starting time for each operation
taking into account the completion time of the previous operation
and the machine’s idle time, while the transportation time and
the setup time should also be considered, and (2) compute the
makespan and the energy consumptions, i.e., the objective val-
ues. Fig. 2 shows the Gantt chart for the solution representation
defined in Fig. 3. The makespan of the solution is 70, and the total
energy consumption is 143.354.

4.2. Initialization strategy

To initialize a group of solutions, this study utilizes a sim-
ple and efficient way. The time complexity of the initialization
strategy is O(nm). The detailed steps are as follows:

Step 1. While the initial population size is less than Psize,
perform the following steps.

Step 2. For the scheduling vector: (1) Initialize an empty
scheduling vector, and add the number for each job j nj times, and
(2) rearrange the sequence for all the numbers in the scheduling
vector in a random way.

Step 3. For the routing vector: (1) Initialize an empty routing
vector, and (2) select each operation Oi,j in the scheduling vector,
randomly select one available machine Mi,j for Oi,j, and store Mi,j

in the routing vector.

4.3. Local search for the routing vector

In this study, we propose a simple but efficient local search
method for the routing vector, which utilized seven types of local
search methods randomly to address our target problem features
and objectives. Firstly, the function to obtain all critical operations
is described in Algorithm 2, afterward, the proposed seven types
of local search heuristics are described in LS1 to LS7 respectively.
It can be observed that: (1) the time complexity of Algorithm 2
is O(n2m); and (2) the time complexity of the seven local search
approaches are O(n2m), respectively.

Algorithm 2: Get all critical operations
Step 1. Find all the operations with the completion time
equal to the makespan, and store them into a vector named
COmax.
Step 2. Perform the following steps until COmax is empty.
Step 3. Fetch and delete the first operation Oi,j in COmax, and
perform the following steps 4–5.
Step 4. Let Ch,k be the completion time of the immediate
predecessor operation Oh,k on the same machine as Oi,j, and
Si,j be the starting time of Oi,j. If Si,j = Ch,k, then store the
operation Oh,k in COmax.
Step 5. If Si,j = Ci,j−1, then store the operation Oi,j−1 in COmax.

LS1: Local search for critical operations
Step1. For a solution X, find all the critical operations by
using Algorithm 2.
Step2. Randomly select one critical operation rc,

Step2.1 If it has more than one candidate machine, then
randomly change another machine for it.

Step2.2 Otherwise, loop until a previous critical operation
rcc, which has more than one candidate machines is found.

Step2.3 Randomly change another machine for rcc.
Step 3. Replace the current solution if a better value has been
obtained.

LS2: Local search for a random critical operation
Step1. For a solution X, find all the critical operations by
using Algorithm 2.
Step2. Randomly select one critical operation rc
Step 3. If rc has more than one candidate machines, then
randomly change another machine for it.
Step 4. Evaluate the newly generated neighboring solution,
and replace the current solution if the latter is better.

LS3: Local search for a random critical machine
Step1. For a solution X, find all the critical operations.
Step2. Randomly select one critical operation rc, such that
the machine assigned for rc is Mc.
Step 3. Randomly select one operation rcc on Mc. If rcc has
more than one candidate machine, then randomly change
another machine for it.
Step 4. Evaluate the newly generated neighboring solution,
and replace the current solution.



6 J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032

Fig. 3. Encoding of an example.

LS4: Local search for a random critical machine
Step 1. For a solution X, find all the critical operations.
Step 2. Randomly select one critical operation rc, such that
the machine assigned for rc is Mc.
Step 3. Randomly select one operation rcc on Mc. If rcc has
more than one candidate machine, then randomly change
another machine for it.
Step 4. Evaluate the newly generated neighboring solution,
and replace the current solution if the latter is better.

LS5: Local search for a busiest machine
Step 1. For a solution X, compute workloads for all machines
Step 2. Select machine M with the maximum workload.
Step 3. Randomly select an operation Oi,j on machine M. If
Oi,j has more than one candidate machine, then randomly
change another machine for it.
Step 4. Evaluate the newly generated neighboring solution,
and replace the current solution.

LS6: Local search for a random operation
Step 1. For a solution X, randomly select one operation Oi,j
on the scheduling vector.
Step 2. If Oi,j has more than one candidate machine, then
randomly change another machine for it.
Step 3. Evaluate the newly generated neighboring solution,
and replace the current solution if the latter is better.

LS7: Local search for a random operation with minimum
processing machine
Step 1. For a solution X, randomly select one operation Oi,j
on the scheduling vector.
Step 2. If Oi,j has more than one candidate machine, then
change the machine with the minimum processing time for
it.
Step 3. Evaluate the newly generated neighboring solution,
and replace the current solution if the latter is better.

4.4. Local search for the scheduling vector

For the considered problem, we include the following three
types of mutation operators:



J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032 7

Fig. 4. Mutation operators.

(1) The two-point reverse (TPR) operator
The TPR operator is to generate a neighboring solution by re-

versing a selected segment, i.e., to reverse all of the elements be-
tween two randomly selected positions in the scheduling vector.
Fig. 4(a) shows the procedure of the TPR operator.

(2) The two-point swap (TPS) operator
The TPS operator is to generate a neighboring solution by

swapping two selected jobs. Fig. 4(b) shows the procedure of the
TPS operator.

(3) Two-point insertion (TPI) operator
The TPI operator is to generate a neighboring solution by

inserting one job before the position of another selected job.
Fig. 4(c) shows the procedure of the TPI operator.

After the mutation of the scheduling vector, the other task

is to apply mutation in the machine assignment vector as well.

Here we investigate a simple method, which initially retains the

assigned machines for all of the affected operations, as shown in

Fig. 4(a)–(c), then, randomly selects a position in the machine

assignment vector, and replaces another available machine for

the corresponding operation. It can be easily observed that the

time complexity is O(n) for TPR, TPS, and TPI, respectively.



8 J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032

Fig. 5. ANOVA comparison results.



J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032 9

Fig. 6. Convergence curves for different types of instances.

4.5. Exploration approaches

Similar to Ruiz and Stutzle (2007) [45], in the proposed IJaya
algorithm, the SA-based heuristic is also used for the accep-
tance criterion to enhance the algorithm with the ability to es-
cape from the local optimal. In this study, we adopt a sim-
ple constant temperature acceptance, where the Temperature =

T ·
∑m

k=1
∑n

j=1
∑θj

i=1 Ti,j,k
n·m·10 and T is a calibrated parameter. It can be eas-

ily observed that the time complexity of the SA-based exploration

approach is O(n2m).



10 J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032

Fig. 7. A Gantt chart for the best solution for Inst1.

5. Numerical analysis

This section discusses the computational experiments used
to evaluate the performance of the proposed algorithm. Our al-
gorithm was implemented in C++ on an Intel Core i7 3.4-GHz
PC with 16 GB of memory. It should be noted that 30 inde-
pendent runs for each instance is commonly used to make fair
comparisons in many references [12,19,41]. Therefore, to verify
the effectiveness and efficiency of the proposed algorithm, after
30 independent runs, the resulting best solutions were collected
for performance comparisons.

The compared algorithms include the GA-GSO (Liu et al. 2019)
[23], ASA (Cruz-Chávez et al. 2017) [13], IG (Aqel et al. 2019) [14],
DABC (Li et al. 2014) [15], TPM (Lei et al. 2018) [26], and DJaya
(Gao et al. 2018) [19]. The main reasons to select the above
compared algorithm are as follows: (1) the GA-GSO algorithm
is designed for the similar problems in this study, except that
the setup time is not considered in GA-GSO algorithm; and (2)
the other five algorithms, i.e., ASA, IG, DABC, TPM, and DJaya are
mainly designed for the FJSP without considering the crane trans-
portation and setup time constraints. However, almost all the
components of the six algorithms can be easily embedded to solve
the considered problem. It should be noted there is few literature
considering the FJSP with crane transportation and setup time
constraints, and therefore, we select the above six algorithms
to make fair comparisons. All of the compared algorithms were
adjusted to adapt to solving the considered problem, where the
parameters were defined according to the considered literature.
The selected performance measure was the relative percentage
increase (RPI), which is calculated as follows:

RPI (C) =
fc − fb

fb
× 100 (20)

where fb is the best fitness value collected by all the compared
algorithms and fc is the minimum fitness value found by a given
algorithm.

5.1. Experimental instances

We test the performance of the proposed algorithms based
on the realistic instances defined in (Liu et al. 2019 [23]). Thirty

different scales of instances were randomly generated, where
the number of jobs n = {20,30,40,50,80,100} and the number of
machines m = {6,7,8,9,10}. Furthermore, the total number of op-
erations of each job is distributed uniformly in the interval [m/2,
m]. The instances can be found on the website https://www.rese
archgate.net/publication/338108832_FJSP_setup_transportation.

5.2. Experimental parameters

The population size is the only predefined parameter of the
proposed algorithm. Based on the existing literature and our
experimental observation, 100 was selected.

5.3. Efficiency of the proposed local search for the routing vector

To investigate the effectiveness of the proposed local search
heuristic discussed in Section 4.3, we implemented the two dif-
ferent types of IJaya algorithms, i.e., the IJaya-NL without the local
search heuristic and the IJaya with all the components discussed
in Section 4. All the other components of the two compared
algorithms were left unchanged.

The comparison results are given in Table 4. In the comparison
table, the first column contains the instance name entries, and
the second column contains the instance scale entries. The two
numbers in the instance scale entries represent the number of
jobs and machines, respectively. For example, the first instance
(Ins1) is a 20-job-6-machine problem, while the last instance
(Ins30) is a 100-job-10-machine problem. The third column rep-
resents the best fitness value obtained out of the two compared
algorithms, while the following two columns represent the fitness
values obtained by the two compared algorithms, respectively.
The last two columns display the deviation or RPI values by the
two algorithms.

It can be observed from Table 4 that: (1) out of the 30 in-
stances with different problem scales, IJaya obtained better values
25 times, although the values were slightly better than the IJaya-
NL method in each case; (2) from the last two columns, the RPI
values also verify the performance of the IJaya method, which
apparently outperforms the IJaya-NL method; and (3) from the
last row in the table, the average performance also verifies the
superior performance of the IJaya method with an average RPI

https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation
https://www.researchgate.net/publication/338108832_FJSP_setup_transportation


J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032 11

Table 4
Comparison results for the proposed local search heuristic.
Instance Scale Best Fitness Dev

IJaya-NL IJaya IJaya-NL IJaya

Ins1 20-6 322.851 322.85 340.147 5.36 0.00
Ins2 20-7 291.81 291.81 321.21 10.08 0.00
Ins3 20-8 367.59 367.59 381.09 3.67 0.00
Ins4 20-9 353.62 353.62 360.08 1.83 0.00
Ins5 20-10 390.22 390.22 395.39 1.32 0.00
Ins6 30-6 583.87 583.87 611.28 4.69 0.00
Ins7 30-7 440.04 440.04 459.31 4.38 0.00
Ins8 30-8 573.73 573.73 583.8 1.76 0.00
Ins9 30-9 510.18 508.97 508.97 0.00 0.24
Ins10 30-10 632.23 628.32 628.32 0.00 0.62
Ins11 40-6 724.99 724.99 758.51 4.62 0.00
Ins12 40-7 633.85 633.85 638.65 0.76 0.00
Ins13 40-8 772.51 772.51 775.55 0.39 0.00
Ins14 40-9 715.9 701.61 701.61 0.00 2.04
Ins15 40-10 886.79 876.47 876.47 0.00 1.18
Ins16 50-6 924.7 924.70 942.48 1.92 0.00
Ins17 50-7 855.97 855.97 860.32 0.51 0.00
Ins18 50-8 1020.11 1008.00 1008 0.00 1.20
Ins19 50-9 1053.62 1053.62 1055.35 0.16 0.00
Ins20 50-10 1133.09 1133.09 1160.92 2.46 0.00
Ins21 80-6 1429.33 1429.33 1466.05 2.57 0.00
Ins22 80-7 1215.75 1215.75 1271.66 4.60 0.00
Ins23 80-8 1691.4 1691.40 1815.72 7.35 0.00
Ins24 80-9 1506.52 1506.52 1646.71 9.31 0.00
Ins25 80-10 1882.84 1882.84 2082.72 10.62 0.00
Ins26 100-6 2072.19 2072.19 2133.55 2.96 0.00
Ins27 100-7 1648.95 1648.95 1844.95 11.89 0.00
Ins28 100-8 2029.09 2029.09 2446.77 20.58 0.00
Ins29 100-9 1850.17 1850.17 2230.16 20.54 0.00
Ins30 100-10 2299.46 2299.46 2940.69 27.89 0.00
Mean 1027.11 1025.72 1108.21 5.41 0.18

Table 5
Comparison results for the proposed SA-based exploration search heuristic.
Instance Scale Best Fitness Dev

IJaya-NS IJaya IJaya-NS IJaya

Ins1 20-6 317.90 317.90 322.85 0.00 1.56
Ins2 20-7 291.81 295.42 291.81 1.24 0.00
Ins3 20-8 367.59 369.65 367.59 0.56 0.00
Ins4 20-9 353.62 357.37 353.62 1.06 0.00
Ins5 20-10 381.57 381.57 390.22 0.00 2.27
Ins6 30-6 575.54 575.54 583.87 0.00 1.45
Ins7 30-7 430.53 430.53 440.04 0.00 2.21
Ins8 30-8 558.19 558.19 573.73 0.00 2.78
Ins9 30-9 489.04 489.04 510.18 0.00 4.32
Ins10 30-10 620.75 620.75 632.23 0.00 1.85
Ins11 40-6 714.89 714.89 724.99 0.00 1.41
Ins12 40-7 623.37 623.37 633.85 0.00 1.68
Ins13 40-8 752.72 752.72 772.51 0.00 2.63
Ins14 40-9 708.60 708.60 715.90 0.00 1.03
Ins15 40-10 854.62 854.62 886.79 0.00 3.76
Ins16 50-6 924.70 932.45 924.70 0.84 0.00
Ins17 50-7 834.22 834.22 855.97 0.00 2.61
Ins18 50-8 977.01 977.01 1020.11 0.00 4.41
Ins19 50-9 1013.87 1013.87 1053.62 0.00 3.92
Ins20 50-10 1096.52 1096.52 1133.09 0.00 3.34
Ins21 80-6 1419.32 1419.32 1429.33 0.00 0.71
Ins22 80-7 1215.75 1218.42 1215.75 0.22 0.00
Ins23 80-8 1691.40 1727.95 1691.40 2.16 0.00
Ins24 80-9 1506.52 1560.81 1506.52 3.60 0.00
Ins25 80-10 1882.84 1992.20 1882.84 5.81 0.00
Ins26 100-6 2072.19 2107.39 2072.19 1.70 0.00
Ins27 100-7 1648.95 1738.42 1648.95 5.43 0.00
Ins28 100-8 2029.09 2306.59 2029.09 13.68 0.00
Ins29 100-9 1850.17 2096.86 1850.17 13.33 0.00
Ins30 100-10 2299.46 2752.10 2299.46 19.68 0.00
Mean 1016.76 1060.81 1027.11 2.31 1.40

value of 0.18, while the IJaya-NL method obtained an average RPI

value of 5.41.

We perform a multifactor analysis of variance (ANOVA) to
evaluate the significance of the difference between the two meth-
ods. Fig. 5(a) shows the means and the 95% LSD (least significant
difference) intervals for the fitness values of the two compared
methods. The p-value is close to zero; hence, there are signifi-
cant differences between the compared methods. Hence, it can
be concluded that the proposed local search heuristic improves
the performance significantly. The main reason for this effect is
that by applying the local search heuristic, the proposed IJaya
algorithm enhances the exploitation abilities.

5.4. Efficiency of the SA-based exploration method

To investigate the effectiveness of the exploration heuristic
discussed in Section 4.5, we implemented the two different types
of IJaya algorithms, i.e., the IJaya-NS without the exploration
heuristic and the IJaya with all the components discussed in Sec-
tion 4. All the other components of the two compared algorithms
were left unchanged. The comparison results are given in Table 5.

It can be observed from Table 5 that: (1) out of the 30 in-
stances with different problem scales, IJaya obtained better values
13 times, which is slightly worse than the IJaya-NS method.
However, the proposed IJaya method shows better performance
for solving the relatively large scale problems, i.e., from ‘‘Inst22’’
to ‘‘Inst30’’; (2) from the last two columns, the RPI values also
verify the performance of the IJaya method, which apparently
outperforms the IJaya-NS method; and (3) from the last row
in the table, the average performance also verifies the superior
performance of the IJaya method with an average RPI value of
1.40, while the IJaya-NS method obtained an average RPI value
of 2.31. In addition, Fig. 5(b) shows the ANOVA result obtained
by the two heuristics on the last 15 instances with relatively
large scales. It can be concluded from Fig. 6(b) that the proposed
SA-based exploration heuristic improves the performance of pro-
posed approach significantly, especially for the instances with
relatively large scales.

5.5. Comparison result with other types of efficient algorithm

We further design experiments to compare the existing state-
of-the-art algorithms with the proposed IJaya on the same prob-
lem. The compared algorithms include GA-GSO (Liu et al. 2019)
[23], PSO-SA (Tang et al. 2019) [12], ASA (Cruz-Chávez et al.
2017) [13], IG (Aqel et al. 2019) [14], DABC (Li et al. 2014) [15],
TPM (Lei et al. 2018) [26], and DJaya (Gao et al. 2018) [19].
The results are given in Table 6, where the RPI values of all the
compared algorithms are recorded.

It can be concluded from the table that: (1) IJaya obtained 20
better solutions among the 30 given instances, which is better
than the second best (ASA algorithm), and (2) from the last row
in the table, the proposed IJaya algorithm noticeably outperforms
the other algorithms with an average RPI value of 1.36.

To verify the statistical efficiency, we also perform the ANOVA
on the compared methods. Fig. 5(c) indicates that the difference
between the IJaya algorithm and the second-best ASA algorithm is
significant. Fig. 5(d) indicates that the IJaya method outperforms
the DJaya algorithm, while Fig. 5(e) reports that IJaya shows
competitive performance compared with the other efficient algo-
rithms. Fig. 6 shows the convergence curve comparisons for the
different types of instances. It can be observed from these con-
vergence curves that the proposed IJaya method exhibits better
convergence capacity for problems with different scales.

Fig. 7 gives a Gantt chart for the best solution for Inst1,
where each operation is represented by a rectangle labeled with
the job number and the operation number. The setup time and
the transportation time are labeled with rectangles filled with
different colors. It can be observed from Fig. 7 that the solution
obtained by the proposed algorithm is effective and efficient.



12 J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032

Table 6
Comparison results for the seven heuristics.
Instance Best Fitness Dev

GA-GSO ASA DABC IG TPM DJaya IJaya GA-GSO ASA DABC IG TPM DJaya IJaya

Ins1 322.85 371.64 355.82 346.25 341.73 345.02 348.22 322.85 15.11 10.21 7.25 5.85 6.87 7.86 0.00
Ins2 291.81 356.59 322.89 340.17 319.97 315.57 299.53 291.81 22.20 10.65 16.57 9.65 8.14 2.64 0.00
Ins3 367.59 503.43 424.97 447.71 454.99 414.01 388.84 367.59 36.95 15.61 21.80 23.78 12.63 5.78 0.00
Ins4 353.62 475.30 417.22 436.94 431.70 393.78 362.32 353.62 34.41 17.99 23.56 22.08 11.36 2.46 0.00
Ins5 390.22 546.98 448.99 505.07 492.01 422.50 394.17 390.22 40.17 15.06 29.43 26.09 8.27 1.01 0.00
Ins6 583.87 732.40 634.74 689.40 641.30 623.85 611.50 583.87 25.44 8.71 18.08 9.84 6.85 4.73 0.00
Ins7 440.04 583.32 474.63 544.17 488.10 491.06 468.06 440.04 32.56 7.86 23.66 10.92 11.59 6.37 0.00
Ins8 573.73 848.65 617.52 748.27 708.62 637.24 598.67 573.73 47.92 7.63 30.42 23.51 11.07 4.35 0.00
Ins9 510.18 764.49 556.70 674.61 626.04 553.79 519.79 510.18 49.85 9.12 32.23 22.71 8.55 1.89 0.00
Ins10 632.23 1040.56 696.10 893.87 870.64 692.80 677.45 632.23 64.59 10.10 41.39 37.71 9.58 7.15 0.00
Ins11 724.99 964.52 764.53 893.14 820.30 785.66 742.78 724.99 33.04 5.45 23.19 13.15 8.37 2.45 0.00
Ins12 633.85 926.40 688.46 843.65 764.11 693.98 672.79 633.85 46.15 8.61 33.10 20.55 9.49 6.14 0.00
Ins13 772.51 1227.98 811.40 1081.73 991.88 851.07 849.57 772.51 58.96 5.03 40.03 28.40 10.17 9.97 0.00
Ins14 715.90 1167.75 753.53 1003.02 934.25 758.13 802.08 715.90 63.12 5.26 40.11 30.50 5.90 12.04 0.00
Ins15 886.79 1478.98 928.63 1261.47 1211.44 946.24 1010.47 886.79 66.78 4.72 42.25 36.61 6.70 13.95 0.00
Ins16 924.70 1291.11 958.02 1177.83 1045.53 999.50 1000.38 924.70 39.62 3.60 27.37 13.07 8.09 8.18 0.00
Ins17 855.97 1219.00 883.06 1089.95 1011.40 895.51 897.07 855.97 42.41 3.17 27.34 18.16 4.62 4.80 0.00
Ins18 1000.72 1574.12 1000.72 1380.21 1252.40 1062.97 1135.77 1020.11 57.30 0.00 37.92 25.15 6.22 13.50 1.94
Ins19 1027.39 1662.45 1027.39 1435.86 1325.01 1098.24 1220.12 1053.62 61.81 0.00 39.76 28.97 6.90 18.76 2.55
Ins20 1086.12 1845.32 1086.12 1541.38 1456.61 1167.59 1363.63 1133.09 69.90 0.00 41.92 34.11 7.50 25.55 4.32
Ins21 1429.33 2020.81 1440.65 1771.86 1673.35 1496.55 1575.33 1429.33 41.38 0.79 23.96 17.07 4.70 10.21 0.00
Ins22 1215.75 1862.79 1227.35 1604.02 1474.81 1292.76 1402.90 1215.75 53.22 0.95 31.94 21.31 6.33 15.39 0.00
Ins23 1625.00 2665.01 1625.00 2241.71 2201.83 1779.03 1941.31 1691.40 64.00 0.00 37.95 35.50 9.48 19.47 4.09
Ins24 1504.32 2421.21 1504.32 2053.50 1977.08 1579.87 1712.58 1506.52 60.95 0.00 36.51 31.43 5.02 13.84 0.15
Ins25 1727.06 3020.80 1727.06 2505.62 2448.10 1915.47 2229.30 1882.84 74.91 0.00 45.08 41.75 10.91 29.08 9.02
Ins26 2000.99 2869.46 2000.99 2490.79 2407.70 2133.05 2232.00 2072.19 43.40 0.00 24.48 20.33 6.60 11.54 3.56
Ins27 1648.95 2466.24 1652.30 2142.91 2034.92 1759.10 1903.60 1648.95 49.56 0.20 29.96 23.41 6.68 15.44 0.00
Ins28 2005.73 3361.27 2005.73 2800.73 2685.44 2243.71 2578.45 2029.09 67.58 0.00 39.64 33.89 11.87 28.55 1.16
Ins29 1741.11 3021.29 1741.11 2563.83 2461.77 1990.56 2330.16 1850.17 73.53 0.00 47.25 41.39 14.33 33.83 6.26
Ins30 2135.35 3850.21 2135.35 3168.63 3172.89 2455.95 3039.00 2299.46 80.31 0.00 48.39 48.59 15.01 42.32 7.69
mean 1004.29 1571.34 1030.38 1355.94 1290.86 1093.15 1176.93 1027.11 50.57 5.02 32.08 25.18 8.66 12.64 1.36

6. Conclusions

In this study, to solve the FJSP with setup time and transporta-
tion time constraints, we developed an improved Jaya algorithm.
The main contributions of this study are as follows: (1) the prob-
lem was modeled by employing an integer programming method;
(2) an improved Jaya algorithm was proposed to solve the target
problem; (3) each solution is represented by a two-dimensional
vector; (4) several problem-specific local search operators are
developed to perform the exploitation tasks; (5) to enhance the
exploration ability, a SA-based heuristic is embedded in the algo-
rithm; and (6) 30 instances with different scales were generated
and used for simulation tests. Six efficient algorithms were se-
lected for detailed comparisons. The simulation results confirmed
that the proposed algorithm can solve the considered problem
with superior effectiveness.

Future work will mainly focus on the following tasks: (1) apply
the proposed algorithm to solve FJSPs with multiple cranes; (2)
consider multi-objective optimization methods [48] that gener-
ate a list of non-dominated solutions such as the Pareto-based
method and multi-objective evolutionary algorithm based on de-
composition; (3) combine other efficient heuristics, such as the
species and memory-driven method, deep-learning algorithms, to
enhance the performance of the proposed algorithm; (4) consider
applying the proposed algorithm to solve other realistic applica-
tions, such as the prefabricated systems [49], flexible open shop
scheduling problems [50], and Cloud computing scheduling prob-
lems [51]; and (5) adapt other realistic constraints and objectives
into the considered problem.

CRediT authorship contribution statement

Jun-qing Li: Conceptualization, Methodology, Writing - origi-
nal draft, Supervision. Jia-wen Deng: Software, Validation. Cheng-
you Li: Visualization, Investigation. Yu-yan Han: Formal analysis,

Resources. Jie Tian: Data curation, Writing - review & editing.
Biao Zhang: Validation, Data curation. Cun-gang Wang: Formal
analysis, Writing - original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research is partially supported by National Science Foun-
dation of China under Grant 61773192, 61803192, 61773246,
Shandong Province Higher Educational Science and Technology
Program, China (J17KZ005), and major Program of Shandong
Province Natural Science Foundation, China (ZR2018ZB0419).

References

[1] P. Brandimarte, Routing and scheduling in a flexible job shop by tabu
search, Ann. Oper. Res. 41 (3) (1993) 157–183.

[2] I. Kacem, S. Hammadi, P. Borne, Approach by localization and multiobjec-
tive evolutionary optimization for flexible job-shop scheduling problems,
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 32 (1) (2002) 1–13.

[3] M.T. Jensen, Generating robust and flexible job shop schedules using
genetic algorithms, IEEE Trans. Evol. Comput. 7 (3) (2003) 275–288.

[4] N.B. Ho, J.C. Tay, E.M.K. Lai, An effective architecture for learning and
evolving flexible job-shop schedules, European J. Oper. Res. 179 (2) (2007)
316–333.

[5] J. Gao, L. Sun, M. Gen, A hybrid genetic and variable neighborhood descent
algorithm for flexible job shop scheduling problems, Comput. Oper. Res.
35 (9) (2008) 2892–2907.

[6] G. Zhang, X. Shao, P. Li, L. Gao, An effective hybrid particle swarm
optimization algorithm for multi-objective flexible job-shop scheduling
problem, Comput. Ind. Eng. 56 (4) (2009) 1309–1318.

[7] L.N. Xing, Y.W. Chen, P. Wang, Q.S. Zhao, J. Xiong, A knowledge-based ant
colony optimization for flexible job shop scheduling problems, Appl. Soft
Comput. 10 (3) (2010) 888–896.

http://refhub.elsevier.com/S0950-7051(20)30327-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb1
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb2
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb3
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb3
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb3
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb4
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb5
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb6
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb7
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb7


J.-q. Li, J.-w. Deng, C.-y. Li et al. / Knowledge-Based Systems 200 (2020) 106032 13

[8] J.Q. Li, Q.K. Pan, K.Z. Gao, Pareto-based discrete artificial bee colony
algorithm for multi-objective flexible job shop scheduling problems, Int.
J. Adv. Manuf. Technol. 55 (9–12) (2011) 1159–1169.

[9] L. Wang, G. Zhou, Y. Xu, S. Wang, M. Liu, An effective artificial bee colony
algorithm for the flexible job-shop scheduling problem, Int. J. Adv. Manuf.
Technol. 60 (1–4) (2012) 303–315.

[10] Y. Yuan, H. Xu, Multiobjective flexible job shop scheduling using memetic
algorithms, IEEE Trans. Autom. Sci. Eng. 12 (1) (2013) 336–353.

[11] K.Z. Gao, P.N. Suganthan, Q.K. Pan, T.J. Chua, T.X. Cai, C.S. Chong, Pareto-
based grouping discrete harmony search algorithm for multi-objective
flexible job shop scheduling, Inform. Sci. 289 (2014) 76–90.

[12] H. Tang, R. Chen, Y. Li, Z. Peng, S. Guo, Y. Du, Flexible job-shop scheduling
with tolerated time interval and limited starting time interval based on
hybrid discrete PSO-SA: An application from a casting workshop, Appl.
Soft Comput. 78 (2019) 176–194.

[13] M.A. Cruz-Chávez, M.G. Martínez-Rangel, M.H. Cruz-Rosales, Accelerated
simulated annealing algorithm applied to the flexible job shop scheduling
problem, Int. Trans. Oper. Res. 24 (5) (2017) 1119–1137.

[14] G. Al Aqel, X. Li, L. Gao, A modified iterated greedy algorithm for flexible
job shop scheduling problem, Chin. J. Mech. Eng. 32 (1) (2019) 21.

[15] J.Q. Li, Q.K. Pan, M.F. Tasgetiren, A discrete artificial bee colony algo-
rithm for the multi-objective flexible job-shop scheduling problem with
maintenance activities, Appl. Math. Model. 38 (3) (2014) 1111–1132.

[16] E. Ahmadi, M. Zandieh, M. Farrokh, S.M. Emami, A multi objective opti-
mization approach for flexible job shop scheduling problem under random
machine breakdown by evolutionary algorithms, Comput. Oper. Res. 73
(2016) 56–66.

[17] Y. Xu, L. Wang, S.Y. Wang, M. Liu, An effective teaching–learning-based
optimization algorithm for the flexible job-shop scheduling problem with
fuzzy processing time, Neurocomputing 148 (2015) 260–268.

[18] T. Jamrus, C.F. Chien, M. Gen, K. Sethanan, Hybrid particle swarm opti-
mization combined with genetic operators for flexible job-shop scheduling
under uncertain processing time for semiconductor manufacturing, IEEE
Trans. Semicond. Manuf. 31 (1) (2017) 32–41.

[19] K. Gao, F. Yang, M. Zhou, Q. Pan, P.N. Suganthan, Flexible job-shop
rescheduling for new job insertion by using discrete jaya algorithm, IEEE
Trans. Cybern. 49 (5) (2018) 1944–1955.

[20] L. Gao, Q.K. Pan, A shuffled multi-swarm micro-migrating birds optimizer
for a multi-resource-constrained flexible job shop scheduling problem,
Inform. Sci. 372 (2016) 655–676.

[21] Q. Zhang, H. Manier, M.A. Manier, A genetic algorithm with tabu search
procedure for flexible job shop scheduling with transportation con-
straints and bounded processing times, Comput. Oper. Res. 39 (7) (2012)
1713–1723.

[22] M. Dai, D. Tang, A. Giret, M.A. Salido, Multi-objective optimization for
energy-efficient flexible job shop scheduling problem with transportation
constraints, Robot. Comput.-Integr. Manuf. 59 (2019) 143–157.

[23] Z. Liu, S. Guo, L. Wang, Integrated green scheduling optimization of flexible
job shop and crane transportation considering comprehensive energy
consumption, J. Cleaner Prod. 211 (2019) 765–786.

[24] L. Shen, S. Dauzère-Pérès, J.S. Neufeld, Solving the flexible job shop
scheduling problem with sequence-dependent setup times, European J.
Oper. Res. 265 (2) (2018) 503–516.

[25] A. Rossi, G. Dini, Flexible job-shop scheduling with routing flexibility
and separable setup times using ant colony optimisation method, Robot.
Comput.-Integr. Manuf. 23 (5) (2007) 503–516.

[26] D. Lei, M. Li, L. Wang, A two-phase meta-heuristic for multiobjective
flexible job shop scheduling problem with total energy consumption
threshold, IEEE Trans. Cybern. 49 (3) (2018) 1097–1109.

[27] H. Wang, Z. Jiang, Y. Wang, H. Zhang, Y. Wang, A two-stage optimization
method for energy-saving flexible job-shop scheduling based on energy
dynamic characterization, J. Cleaner Prod. 188 (2018) 575–588.

[28] H. Mokhtari, A. Hasani, An energy-efficient multi-objective optimization
for flexible job-shop scheduling problem, Comput. Chem. Eng. 104 (2017)
339–352.

[29] X. Wu, Y. Sun, A green scheduling algorithm for flexible job shop with
energy-saving measures, J. Clean. Prod. 172 (2018) 3249–3264.

[30] L. Zhang, Q. Tang, Z. Wu, F. Wang, Mathematical modeling and evolutionary
generation of rule sets for energy-efficient flexible job shops, Energy 138
(2017) 210–227.

[31] L. Meng, C. Zhang, X. Shao, Y. Ren, MILP models for energy-aware flexible
job shop scheduling problem, J. Clean. Prod. 210 (2019) 710–723.

[32] R. Rao, Jaya: A simple and new optimization algorithm for solving con-
strained and unconstrained optimization problems, Int. J. Ind. Eng. Comput.
7 (1) (2016) 19–34.

[33] R.V. Rao, A. Saroj, A self-adaptive multi-population based jaya algorithm
for engineering optimization, Swarm Evol. Comput. 37 (2017) 1–26.

[34] C. Huang, L. Wang, R.S.C. Yeung, Z. Zhang, H.S.H. Chung, A. Bensoussan,
A prediction model-guided jaya algorithm for the PV system maximum
power point tracking, IEEE Trans. Sustain. Energy 9 (1) (2017) 45–55.

[35] R.V. Rao, K.C. More, Design optimization and analysis of selected thermal
devices using self-adaptive jaya algorithm, Energy Convers. Manage. 140
(2017) 24–35.

[36] S.P. Singh, T. Prakash, V.P. Singh, M.G. Babu, Analytic hierarchy process
based automatic generation control of multi-area interconnected power
system using jaya algorithm, Eng. Appl. Artif. Intell. 60 (2017) 35–44.

[37] S.O. Degertekin, L. Lamberti, I.B. Ugur, Sizing, layout and topology design
optimization of truss structures using the jaya algorithm, Appl. Soft
Comput. 70 (2018) 903–928.

[38] S. Mishra, P.K. Ray, Power quality improvement using photovoltaic fed
DSTATCOM based on JAYA optimization, IEEE Trans. Sustain. Energy 7 (4)
(2016) 1672–1680.

[39] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided JAYA
algorithm for parameters identification of photovoltaic cell and module,
Appl. Energy 237 (2019) 241–257.

[40] N.N. Son, C. Van Kien, H.P.H. Anh, Parameters identification of bouc–
wen hysteresis model for piezoelectric actuators using hybrid adaptive
differential evolution and jaya algorithm, Eng. Appl. Artif. Intell. 87 (2020)
103317.

[41] J.Q. Li, X.R. Tao, B.X. Jia, Y.Y. Han, C. Liu, P. Duan, Z.X. Zheng, H.Y. Sang,
Efficient multi-objective algorithm for the lot-streaming hybrid flowshop
with variable sub-lots, Swarm Evol. Comput. (2020) http://dx.doi.org/10.
1016/j.swevo.2019.100600.

[42] J.Q. Li, M.X. Song, L. Wang, P.Y. Duan, Y.Y. Han, H.Y. Sang, Q.K. Pan, Hybrid
artificial bee colony algorithm for a parallel batching distributed flow
shop problem with deteriorating jobs, IEEE Trans. Cybern. 50 (6) (2020)
2425–2439.

[43] W. Gao, H. Sheng, J. Wang, S. Wang, Artificial bee colony algorithm based
on novel mechanism for fuzzy portfolio selection, IEEE Trans. Fuzzy Syst.
27 (2018) 966–978.

[44] R. Ruiz, Q.K. Pan, B. Naderi, Iterated greedy methods for the distributed
permutation flowshop scheduling problem, Omega 83 (2019) 213–222.

[45] R. Ruiz, T. Stützle, A simple and effective iterated greedy algorithm for the
permutation flowshop with scheduling problem, European J. Oper. Res. 177
(3) (2007) 2033–2049.

[46] J.Q. Li, Q.K. Pan, H.Y. Duan, Solving multi-area environmental/economic
dispatch by a pareto-based chemical-reaction optimization algorithm,
IEEE/CAA J. Autom. Sin. 6 (5) (2019) 1240–1250.

[47] B. Zhang, Q. Pan, L. Gao, L. Meng, X. Li, K. Peng, A three-stage multi-
objective approach based on decomposition for an energy-efficient hybrid
flowshop scheduling problem, IEEE Trans. Syst. Man Cybern.: Syst. (2019)
http://dx.doi.org/10.1109/TSMC.2019.2916088.

[48] Y.Y. Han, J.Q. Li, H.Y. Sang, Y.P. Liu, K.Z. Gao, Q.K. Pan, Discrete evo-
lutionary multi-objective optimization for energy-efficient blocking flow
shop scheduling with setup time, Appl. Soft Comput. 2020 (2020) http:
//dx.doi.org/10.1016/j.asoc.2020.106343.

[49] J.Q. Li, Y.Q. Han, P.Y. Duan, Y.Y. Han, B. Niu, C.D. Li, Z.X. Zheng, Y.P. Liu,
Meta-heuristic algorithm for solving vehicle routing problems with time
windows and synchronized visit constraints in prefabricated systems, J.
Clean. Prod. (2020) http://dx.doi.org/10.1016/j.jclepro.2019.119464.

[50] D. Bai, Z. Zhang, Q. Zhang, Flexible open shop scheduling problem to
minimize makespan, Comput. Oper. Res. 67 (2016) 207–215.

[51] J.Q. Li, Y. Han, A hybrid multi-objective artificial bee colony algorithm
for flexible task scheduling problems in cloud computing system, Cluster
Comput. (2020) http://dx.doi.org/10.1007/s10586-019-03022-z.

http://refhub.elsevier.com/S0950-7051(20)30327-0/sb8
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb8
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb8
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb8
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb8
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb9
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb9
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb9
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb9
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb9
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb10
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb11
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb12
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb13
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb14
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb14
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb14
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb15
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb16
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb16
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb16
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb16
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb16
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb16
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb16
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb17
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb17
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb17
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb17
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb17
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb18
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb19
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb19
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb19
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb19
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb19
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb20
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb20
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb20
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb20
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb20
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb21
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb22
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb23
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb24
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb25
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb25
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb25
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb25
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb25
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb26
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb27
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb28
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb28
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb28
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb28
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb28
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb29
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb30
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb31
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb31
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb31
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb32
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb33
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb34
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb35
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb35
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb35
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb35
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb35
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb36
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb37
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb37
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb37
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb37
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb37
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb38
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb38
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb38
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb38
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb38
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb39
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb39
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb39
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb39
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb39
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb40
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb40
http://dx.doi.org/10.1016/j.swevo.2019.100600
http://dx.doi.org/10.1016/j.swevo.2019.100600
http://dx.doi.org/10.1016/j.swevo.2019.100600
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb42
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb42
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb42
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb42
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb42
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb42
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb42
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb43
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb44
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb45
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb45
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb45
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb45
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb45
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb46
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb46
http://dx.doi.org/10.1109/TSMC.2019.2916088
http://dx.doi.org/10.1016/j.asoc.2020.106343
http://dx.doi.org/10.1016/j.asoc.2020.106343
http://dx.doi.org/10.1016/j.asoc.2020.106343
http://dx.doi.org/10.1016/j.jclepro.2019.119464
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb50
http://refhub.elsevier.com/S0950-7051(20)30327-0/sb50
http://dx.doi.org/10.1007/s10586-019-03022-z

	An improved Jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times
	Introduction
	Problem description
	Problem description
	Problem formulation
	Problem illustration

	The canonical Jaya algorithm
	The proposed algorithm
	Solution representation and decoding strategy
	Initialization strategy
	Local search for the routing vector
	Local search for the scheduling vector
	Exploration approaches

	Numerical analysis
	Experimental instances
	Experimental parameters 
	Efficiency of the proposed local search for the routing vector
	Efficiency of the SA-based exploration method
	Comparison result with other types of efficient algorithm

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


