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Solving Multi-Area Environmental/Economic
Dispatch by Pareto-Based Chemical-Reaction

Optimization Algorithm
Junqing Li, Member, IEEE, Quanke Pan, Peiyong Duan, Hongyan Sang, and Kaizhou Gao

Abstract—In this study, we present a Pareto-based chemical-
reaction optimization (PCRO) algorithm for solving the multi-
area environmental/economic dispatch optimization problems.
Two objectives are minimized simultaneously, i.e., total fuel
cost and emission. In the proposed algorithm, each solution is
represented by a chemical molecule. A novel encoding mecha-
nism for solving the multi-area environmental/economic dispatch
optimization problems is designed to dynamically enhance the
performance of the proposed algorithm. Then, an ensemble
of effective neighborhood approaches is developed, and a self-
adaptive neighborhood structure selection mechanism is also
embedded in PCRO to increase the search ability while main-
taining population diversity. In addition, a grid-based crowding
distance strategy is introduced, which can obviously enable the
algorithm to easily converge near the Pareto front. Furthermore,
a kinetic-energy-based search procedure is developed to enhance
the global search ability. Finally, the proposed algorithm is tested
on sets of the instances that are generated based on realistic
production. Through the analysis of experimental results, the
highly effective performance of the proposed PCRO algorithm
is favorably compared with several algorithms, with regards to
both solution quality and diversity.

Index Terms—Chemical-reaction optimization algorithm, grid-
based crowding distance, multi-area environmental/economic dis-
patch (MAEED) problem, multi-objective optimization.
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IN the power industry, economical dispatch (ED) has been
studied for many years. With the objective to minimize

fuel costs while fulfilling operational constraints, ED plays an
important role in the power industry. During recent decades,
considering the environmental dispatch constraints, the en-
vironmental/economic dispatch (EED) has gained more re-
search attention. EED is a multi-objective problem with the
following conflicting objectives: the minimization of fuel costs
and pollution emission. Much research has been conducted
to solve the EED problems [1]−[9]. Talaq et al. gave a
summary of environmental/economic dispatch problems in
electric power systems since 1970 [1]. During recent years,
many heuristics and meta-heuristics have been applied to solve
the EED problem, such as the linear programming techniques
[2], genetic algorithm (GA) [3]−[6], and particle swarm
optimization (PSO) [7], [8]. The most popular among these
methods is genetic algorithm (GA), such as strength Pareto
evolutionary algorithm (SPEA) [3], non-dominated sorting
genetic algorithm (NSGA)-based approach [4], niched Pareto
genetic algorithm (NPGA)-based approach [5], and NSGA-
II-based approach [6]. Although many promising results have
been obtained by applying the GA-based evolutionary method
to solve the EED problem, many issues should be addressed
for these algorithms, such as the convergence ability, solutions
diversity, and the performing efficiency. Particle swarm opti-
mization (PSO) is also a very popular intelligent optimization
algorithm, which has also been widely applied to solve the
EED problem, such as fuzzy clustering-based particle swarm
(FCPSO) algorithm [7] and bare-bones multi-objective particle
swarm optimization algorithm (BB-MOPSO) [8]. However,
it is essential for the PSO-based algorithm that how to bal-
ance the ability of global search and local search. With the
development of the cloud computing technology, a cluster
of distributed devices has generally been built and utilized
to provide on-demand computational resources or services
for potential users across the internet [9]−[15]. Therefore,
more and more studies have focused on the research in cloud
or distributed production environments. Although there is
much literature regarding the EED problems, most of them
have not considered the multi-area EED (MAEED) problems,
which is the common case in industrial applications. Several
heuristics and meta-heuristics have been proposed for multi-
area ED problems, such as the Dantzig Wolfe decomposition
principle [16], evolutionary programming [17], expert systems
[18], multi-objective particle swarm optimization (MOPSO)
algorithm [19], and teaching-learning-based optimization algo-
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rithm (TLBO) [20]. Moreover, the extended version of the
MAEED has also been studied in recent years. However,
for the MAEED problem, two important issues should be
solved: 1) the Pareto-based multi-objective method should be
introduced to solve this type of problem, because most of
the recently published approaches are based on the weighted
sum approach; 2) the global and local search abilities should
be balanced to increase the convergence ability while main-
taining the solutions diversity. Very recently, by simulating
the behavior of molecules in chemical reactions, an efficient
chemical-reaction optimization (CRO) algorithm was proposed
by Lam and Li to optimize combinatorial problems [21]. CRO
has four elementary reactions, namely, on-wall ineffective
collision, inter-molecular ineffective collision, decomposition,
and synthesis. Experimental comparisons demonstrated that
the performance of CRO is competitive with other swarm
intelligent algorithms [21]−[24]. In this paper, we propose
an effective Pareto-based CRO (PCRO) to solve the re-
alistic multi-area environmental/economic dispatch problem.
The main contributions of this study are given as follows:
1) we present a Pareto-based chemical-reaction optimization
(PCRO) algorithm for solving the multi-area environmental/e-
conomic dispatch optimization problems; 2) a novel encoding
mechanism for solving the multi-area environmental/economic
dispatch optimization problems is developed to dynamically
enhance the performance of the proposed algorithm; 3) an en-
semble of effective neighborhood approaches is developed, and
a self-adaptive neighborhood structure selection mechanism is
also embedded in PCRO to increase the search ability while
maintaining population diversity; 4) a grid-based crowding
distance strategy is introduced, which can obviously enable
the algorithm to easily converge near the Pareto front; and 5) a
kinetic-energy-based search procedure is developed to enhance
the global search ability. The rest of this paper is organized
as follows: Section II describes the problem. The related
algorithms are presented in Section III. Section IV gives the
framework of the proposed algorithm. Section V illustrates
the experimental results and compares them to the present
performing algorithms from the literature to demonstrate the
superiority of the proposed algorithm. The last section gives
the concluding remarks and future research directions.

II. PROBLEM DESCRIPTION

There are multiple areas in the MAEED, each containing
several generators. The power can be transmitted from one area
to another, while the transmission cost is routinely considered.
Therefore, the objective of MAEED is to minimize the total
production cost of supplying loads to all areas while satisfy-
ing the power balance constraints. Meanwhile, the pollution
emission should also be minimized.

A. Design Objectives With Quadratic Cost Function

The first objective of the MAEED problem is to minimize
the operational costs. In this study, the generator cost curves

are represented by quadratic functions, similar to [8]. The total
$/h fuel cost FC (PG) can be represented as follows:

FC (PG) =
N∑

i=1

Mi∑

j=1

(
aij + bijPGij

+ cijP
2
Gij

)
(1)

where PGij
is the power generated by the jth generator in

area i, N is the area number of the system, Mi is the number
of generators in the jth area, and aij , bij , and cij are the cost
coefficients of the jth generator in area i.

The second objective of the MAEED problem is to minimize
the pollution emission. The SO2 and NOx emissions can be
approximated by using a quadratic function of the generator
output, which is given as follows.

FE (PG) =
N∑

i=1

Mi∑

j=1

(
aij + βijPGij + γijP

2
Gij

)
(2)

where αij , βij , and γij are pollution emission coefficients of
the jth generator in area i.

B. Design Objectives With Valve Point Loading

The total $/h fuel cost FC (PG) considering valve-point
loading of the generator can be represented as follows [19]:

FC (PG) =
N∑

i=1

Mi∑

j=1

(
aij + bijPGij

+ cijP
2
Gij

)

+
N∑

i=1

Mi∑

j=1

∣∣dij × sin
{
eij ×

(
Pmin

GIJ
− PGij

)}∣∣

(3)

where dij and eij are the cost coefficients of the jth generator
in area i due to the valve-point effect.

The SO2 and NOx emissions can be computed as follows
considering valve-point loading of the generator [18].

FC (PG) =
N∑

i=1

Mi∑

j=1

aij + bijPGij
+ cijP

2
Gij

100

+
N∑

i=1

Mi∑

j=1

ξij × exp
(
PGij λij

)
(4)

where ξij and λij are pollution emission coefficients of the
jth generator in area i due to the valve-point effect.

C. Design Constraints

The constraints considered in this study include the genera-
tion capacity of each generator, area power balance and tie-line
transfer limits.

Constraint 1: Generation capacity constraint. The real
power output of each generator in each area is routinely
restricted by lower and upper bounds as follows:

Pmin
Gij

≤ PGij
≤ Pmax

Gij
(5)

where Pmin
Gij

and Pmax
Gij

are the minimum and maximum power
produced by the jth generator in area i.

Constraint 2: Generation power balance constraint. The
total real power generation of each area should satisfy its
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predefined power demand plus the total real power loss in the
transmission lines in the area, which is computed as follows:

Mi∑

j=1

PGij
− PDi

− PLi
−

∑

k,k 6=i

Tik = 0 ∀i (6)

where PDi
is the real power demand of area i. Tik is the

tie-line real power transfer from area i to area k, which is a
positive value if the power is transferred from area i to area k
and a negative value vice versa. The transmission loss PLi of
area i may be expressed by using B-coefficients as follows:

PLi
=

Mi∑

j=1

Mi∑

l=1

PGij
BiljPGil

+
Mi∑

j=1

B0ijPGij
+B00i. (7)

Constraint 3: The tie-line real power transfer Tik from area
i to area k should not exceed the tie-line capacity, which is
given as follows:

Tmin
ik ≤ Tik ≤ Tmax

ik . (8)

III. THE RELATED ALGORITHMS

A. The Canonical CRO

CRO was introduced by Lam and Li in 2010; it loosely
mimics what happens to molecules in a chemical reaction
system and tries to capture the energy in the reaction process
[21]−[24]. The molecules represent the solutions for the
considered problem, and possess two types of energies, i.e.,
potential energy (PE) and kinetic energy (KE). PE corresponds
to the objective function of a molecule while the KE of
a molecule symbolizes its ability to escape from a local
minimum. CRO is a population-based intelligent algorithm
with variable population size. In the canonical CRO, there
are four elementary collisions: the on-wall ineffective colli-
sion, decomposition, inter-molecular ineffective collision, and
synthesis. The main features of the four collisions are given
as follows [21]−[24]:

1) The on-wall ineffective collision reaction occurs when
a molecule hits the wall, bounces back, and then becomes a
new molecule if the given condition is satisfied. During the
collision, the molecule will lose some percent of KE to the
buffer.

2) The decomposition reaction is used to mimic the process
of hitting the wall and then decomposing into two or more
pieces.

3) The process of two or more molecules sharing infor-
mation with each other and then producing two or more
other different molecules is called inter-molecular ineffective
collision.

4) Synthesis is the process where more than one molecule
collide and combine together.

B. The Concept of Pareto Optimal

To describe concisely, we list several basic Pareto definitions
as follows [25]−[28]:

1) Pareto dominance: A solution x is said to (Pareto)
dominate another solution u (denoted as x ≺ u ) if and only
if

(∀i ∈ {1, 2, · · · , w} : fi(x) ≤ fi(u)
∧ (∃j ∈ {1, 2, · · · , w} : fj(x) < fj(u)) (9)

Pareto non-dominated

x ∼ µ ≡ ¬x ≺ µ ∧ ¬µ ≺ x. (10)

2) Optimal Pareto solution: A solution x is said to be an
optimal Pareto solution if and only if there is no solution v in
the search space that satisfies v ≺ x.

¬∃v ∈ Θ : v ≺ x. (11)

3) Grid-based crowding distance: Increasing the selection
pressure towards the Pareto front is crucial to the proposed
algorithm. In this study, we introduce a grid-based crowding
distance into our proposed algorithm, as in [28].

Given a set of non-dominated solutions, let mink(P ) and
maxk(P ) denote the minimum and maximum value of the kth
objective, respectively. Let M be the number of objectives.

Let vk = (maxk(P )−mink(P ))/(2×div), lbk = mink(P )
− vk, ubk = maxk(P ) + vk, and dk = (ubk − lbk)/div.

Let Gk(x) = b(Fk(x)− lbk)/dkc, which is the grid loca-
tion of an individual in the kth objective, where b·c denotes
the floor function and Fk(x) is the actual objective value in
the kth objective.

Let GRx =
∑M

k=1 Gk(x), which is a convergence estimator
for ranking individual solutions based on their grid locations.

Let GD(x, y) =
∑M

k=1 |Gk(x)−Gk(y)|, which is the grid
difference between solutions x and y.

A solution y is regarded as a neighbor of a solution x, if
GD(x, y) < M .

Let GCD(x) =
∑

y∈N(x) (M −GD(x, y)), which is the
density estimator of solution x, where N(x) is the set of
neighboring solutions of x.

Let

GCPD(x) =√√√√
M∑

k=1

(
Fk(x)− (lbk + Gk(x)× dk)

dk

)2

which is the normalized Euclidean distance between an indi-
vidual and the best corner of its hyperbox.

IV. THE PROPOSED PCRO

In this section, we present the detailed implementation of
the proposed PCRO algorithm, which includes the encoding
and decoding, the improved CRO reaction operators, and the
update process of the Pareto archive set. The flowchart of the
PCRO algorithm is given as follows.

Step 1: Initialize the system parameters.
Step 2: Initialize the population, and evaluate each solution

in the population (Section IV-A).
Step 3: Apply the non-dominated sorting function to the

current population, and update the Pareto archive set by using
the solutions in the first level (Section IV-H).
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Step 4: While maximum computational time is not reached
do following steps.

Step 5: For each molecule in the current population, apply
the on-wall ineffective collision function (Section IV-D).

Step 6: Randomly select two molecules in the current
population and apply the Inter-molecular ineffective collision
function (Section IV-E).

Step 7: Apply the kinetic-energy-based search procedure
(Section IV-I).

Step 8: Apply the decomposition (Section IV-F) and syn-
thesis (Section IV-G) functions to the current population.

Step 9: Generate the next population: 1) Record the neigh-
boring solutions generated by the above four elementary
collisions into a neighboring set; 2) Apply the non-dominated
function on the neighboring set; 3) Update the Pareto archive
set by using the solutions in the first level; 4) Generate the next
population by using the grid-based crowding method (Section
IV-H).

A. Encoding

In this study, we propose a novel encoding mechanism
for solving the multi-area environmental/economic dispatch
optimization problems. A detailed realization is given as
follows.

First, the whole evolution stage is divided into five stages.
1) At the first stage, each power generator is represented

by an integer. For example, given a problem with six power
generators, Table I presents the solution representation at the
first stage. As shown in Table I, at the first stage, the energy
value for power generator PG1 is 0.4, while the values for
other generators are 0.5, 0.5, 0.7, 0.6, and 0.3, respectively.

TABLE I
REPRESENTATION FOR THE FIRST STAGE

PG1 PG2 PG3 PG4 PG5 PG6

4 5 5 7 6 3

2) At the second stage, each power generator is represented
by two integers. For example, given a problem with six power
generators, Table II presents the solution representation at the
second stage. As shown in Table II, at the second stage, the
energy value for power generator PG1 is 0.45, while the
values for other generators are 0.34, 0.65, 0.45, 0.57, and 0.63,
respectively.

TABLE II
REPRESENTATION FOR THE SECOND STAGE

PG1 PG2 PG3 PG4 PG5 PG6

45 34 65 45 57 63

3) At the last stage, each power generator is represented by
five integers. For example, given a problem with six power
generators, one solution for the last stage is 43 576, 49 534,
30 520, 2756, 3450, 87 625. The above solution means that at

the last stage, the energy value for power generator PG1 is
0.43576, while the values for other generators are 0.49534,
0.30520, 0.02756, 0.03450, and 0.87625, respectively.

B. Neighborhood Structures

In this study, considering the problem structure and the
balance of the exploration and exploitation ability, five neigh-
borhood structures are proposed, as follows:

1) Single-swap structure, denoted by N1. a) Randomly
select two integer numbers in the solution representation;
b) Swap the two selected integers in the representation string.

2) Insert structure, denoted by N2. a) Randomly select two
positions r1 and r2 in the solution representation, where r1

< r2; b) Insert the integer at the position r2 before r1 in the
representation string.

3) Consecutive-swap structure, denoted by N3, with an
example given in Fig. 1. a) Randomly select two positions r1

and r2 in the solution representation, where r1 < r2; b) Swap
each pair of elements between the positions r1 and r2 in the
representation string. The detailed steps are as follows: i) let
p = r1, and q = r2; ii) swap the two elements p and q in the
solution representation; let p = r1 + 1, and q = r2 − 1; iii)
Repeat step ii) until p ≥ q.

Fig. 1. N3 neighborhood.

4) Multi-swap structure, denoted by N4, similar to [4].
Perform several single-swap structures.

5) Multi-insert structure, denoted by N5. a) Randomly
generate a limit number h between h1 and h2, where h1 and
h2 are the lower and upper bounds of the loop number, and
are experimentally set to 5 and 10, respectively; b) Perform
the following steps h times: randomly select one position r in
the solution representation, insert the element at the positions
r + 1 before the position r − 1. If r = 0, set r − 1 equal to
n; if r = n, set r + 1 to 0.

C. A Self-adaptive Neighborhood Strategy

The neighboring approaches, introduced in Section IV-B,
have different roles for the convergence capability or the
population diversity. To balance the exploration and exploita-
tion capability during the evolution, that is, to enhance the
search ability while maintaining population diversity and to
utilize different neighborhood structures in different stages,
we introduce a self-adaptive strategy, that is similar to [29],
[30]. The detailed steps of the proposed self-adaptive strategy
are as follows.
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Step 1: Set the function parameter, such as the length of the
neighborhood vector: Ns, and the refill probability Rp.

Step 2: Initialize a neighborhood vector (NV), with length
equal to Ns, by filling with a random neighborhood structure
taken from the structures discussed in Section IV-B.

Step 3: Generate an empty winning neighborhood vector
(WNV), with length equal to Ns.

Step 4: After receiving a call for selection of a neighborhood
structure, perform Steps 5−7.

Step 5: If NV is not empty, take the first neighboring
structure from NV to generate a neighboring solution of
the current one. If the current solution is dominated by or
non-dominated with the new neighboring solution, insert the
corresponding neighborhood structures into WNV.

Step 6: If NV is empty and WNV is not empty, fill NV
with the elements of the current WNV. If the length of the
new NV is less than Ns, the empty positions will be filled as
follows: 75% is refilled by WNV, and then the remaining 25%
is refilled by a random selection from the five neighborhood
structures discussed in Section IV-B.

Step 7: If the WNV is empty, the new NV will be filled
as follows: 50% from the latest NV, with the remaining 50%
randomly selected from the neighborhood structures.

D. On-wall Ineffective Collision

In the proposed PCRO, each molecule performs the on-wall
ineffective collision procedure to make a deep search during
the evolution. Therefore, the on-wall ineffective collision is
crucial for the algorithm and should consider both the ex-
ploration and exploitation ability. In this study, we propose a
flexible on-wall ineffective collision, which is given as follows:

Step 1: Given a molecule, select a neighborhood structure
by using the self-adaptive neighborhood strategy.

Step 2: Generate a new neighboring solution around the cur-
rent individual by using the selected neighborhood structure.

Step 3: If the new neighboring solution is non-dominated
with the current solution, or the current one is dominated
by the new generated solution, insert the new neighboring
solution into a neighbouring set and insert the selected neigh-
borhood structure into the winning vector WNL; otherwise,
discard the neighboring solution and decrease the kinetic
energy value of the current solution.

E. Inter-molecular Ineffective Collision

The inter-molecular ineffective collision occurs when two
molecules collide and then produce two new molecules. Sim-
ilar to the canonical CRO, in this study, the inter-molecular
ineffective collision is realized by performing independently
on-wall ineffective collision for the two selected molecules.
That is, in parallel, the two molecules experience a slight
change to their structures.

F. Decomposition

The decomposition reaction produces two or more
molecules based on one molecule. Because the solution in

the Pareto archives set usually has a nice performance fea-
ture, therefore, in the proposed algorithm, we select a non-
dominated solution to generate two neighboring solutions
to replace the two solutions, i.e., the worst solution in the
population, and the solution with the minimum kinetic energy
value. If there is more than one solution with the same
minimum kinetic energy value, randomly select one. The worst
solution is the one in the last Pareto level and with the least
grid crowding distance value. The decomposition is realized
as follows:

Step 1: Randomly select a non-dominated solution from the
Pareto archive set, denoted as ωr.

Step 2: Perform an on-wall collision Nc times for the
selected molecule and insert the new neighboring solutions
into a solution set Snb.

Step 3: Apply the non-dominated sorting function to the
solution set Snb and randomly select two solutions in the first
Pareto level, if there is only one solution in the first level,
randomly select another solution in the second level; the two
selected solutions are denoted as ω1 and ω2, respectively.

Step 4: Replace the worst solution in the current population
and the solution with the minimum kinetic energy value with
ω1 and ω2, respectively.

G. Synthesis

The synthesis in the canonical CRO algorithm generates
one solution based on two or more solutions to increase the
exploration ability to escape from local optima. In this study,
we realize the synthesis procedure as follows:

Step 1: Sequence the solutions in the current population
in increasing order according to their kinetic energy values.
Select the two molecules ω1 and ω2 at the first two positions.

Step 2: If ω1 dominates ω2, denote ω1 as ωc and ω2 as ωn.
Otherwise, let ωc = ω2 and ωn = ω1.

Step 3: Perform an on-wall collision Nc times for ωc, and
insert the new neighboring solutions into a solution set Snb.

Step 4: Apply the non-dominated sorting function to the
solution set Snb, randomly select one solution ωb in the first
Pareto level, and replace ωn with ωb.

H. Crowding Distance Based on Grid Division

In this study, the non-dominated sorting algorithm [31]
was first applied to the population dividing the solutions into
several levels according to their front level number. For the
solutions at the same level, the solution with larger grid-based
crowding distance is considered better than the one with a
smaller crowding distance value. The detailed steps are as
follows:

Step 1: For each kth objective of individuals in the current
Pareto level, compute the mink and maxk values.

Step 2: For each individual x, compute the lbk, dk, and ubk

values for each kth objective.
Step 3: For each individual x, compute the grid coordinate

Gk(x) and sum of grid coordinate GR(x) values.
Step 4: For each individual x, compute and record the set

of individuals that are dominated by x, or non-dominated with
x.
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Step 5: For each individual x, compute the grid difference
GD(x, y) from other individuals and record the neighboring
solutions of each individual.

Step 6: For each individual x, compute the density estimator
GCD(x) and the normalized Euclidean distance GCPD(x).

Step 7: Sort each individual in the current Pareto level by
using the grid-based tournament selection function introduced
in [28].

Step 8: Update the values of Gk(x), GCD(x), and
GCPD(x), after the selection.

I. Kinetic-energy-based Search Procedure

To enhance the ability to escape from the local optima,
we propose a kinetic-energy-based search procedure, which
is given as follows.

Step 1: In the initial phase, set the kinetic energy value to
KEmax for each solution in the current population.

Step 2: At each evolution stage, record all solutions whose
kinetic energy values equal to 0 into a set S0.

Step 3: Randomly select one solution from the set S0 and
replace it with a randomly generated molecule.

V. EXPERIMENTAL EVALUATION

This section discusses the computational experiments used
to evaluate the performance of the proposed algorithm. Our
algorithm was implemented in C++ on an Intel Core i7
3.4 GHz PC with 16 GB memory. The proposed algorithms
were independently tested by using 30 runs for each case, and
the best results were collected for comparison. During recent
years, multi-objective optimization methods have commonly
been compared using performance metrics such as conver-
gence ratio to the Pareto front and hyper-volume. However, in
the field of power systems, many currently published studies
use the best cost solution, the best emission solution and the
best compromise solution for comparison. Therefore, in this
study, we also use the above three comparison metrics to
verify the efficiency of the proposed PCRO algorithm. The
parameters for the proposed PCRO are as follows: the initial
population size is 50; the initial kinetic energy value for each
solution KEmax = 20; and the local search strength Nc = 20.

A. Performance for Case 1

In this section, we tested the proposed algorithm on the
IEEE 30-bus problem with six generators. Table III gives
the coefficients of fuel cost, pollution emissions (p.u.) and
generator capacities. Table IV provides the best solutions for
cost with eight algorithms with respect to optimizing Case 1.
Table V presents the best solutions for emission, while Table
VI lists the compromise solutions obtained by the proposed
algorithm. The compared algorithms include LP [2], NSGA
[4], NPGA [5], SPEA [3], NSGA-II [6], FCPSO [7], and BB-
MOPSO [8].

As shown in Table IV, except the PCRO, the BB-MOPSO
obtained the best solution with a minimum fuel cost of
600.112. However, our PCRO algorithm obtained a solution
with the two objective values 600.092 and 0.221813, which

dominates the solution obtained by BB-MOPSO. Meanwhile,
the solutions obtained by LP, NSGA, and NSGA-II are
also dominated by the above solution (600.092, 0.221813).
In addition, the solution obtained by SPEA is dominated
by (600.108, 0.221366) found by PCRO, and the result by
FCPSO is also dominated by (600.123, 0.22114) provided
by PCRO. Therefore, all solutions obtained by the seven
compared algorithms are dominated by one solution due to the
proposed PCRO algorithm. From the above analysis, we can
conclude that PCRO is superior than the other seven compared
algorithms.

From Table V, we can see that, the solution obtained by
our PCRO algorithm dominates all solutions obtained by the
other seven compared algorithms. It can be concluded from
Tables IV−VI that the proposed PCRO is efficient for solving
the given problem.

To show the efficiency of the proposed grid-based crowding
distance strategy discussed in Section IV-H, we made a
detailed comparison of the two approaches, i.e., the algorithm
with the grid-based crowding distance strategy (denoted by
PCROG) and the algorithm without the grid-based crowding
distance strategy (denoted by PCRONG). Fig. 2 gives the last
Pareto front comparisons of the two algorithms for optimizing
Case 1. It can be seen from the figure that PCROG shows
better than the results by PCRONG both in solutions quality
and solutions diversity.

Fig. 2. Comparisons of the Pareto fronts for Case 1.

B. Performance for Case 2

In order to validate the constraint handling strategy and
evaluate the performance of the proposed algorithm, in Case
2, the transmission losses are considered as in [8]. The B-
coefficients related to the transmission losses are given as
follows.

B =



0.1382
−0.0299

0.0044
−0.0022
−0.0010
−0.0008

−0.0299
0.0487

−0.0025
0.0004
0.0016
0.0041

0.0044
−0.0025

0.0182
−0.0070
−0.0066
−0.0066

−0.0022
0.0004

−0.0070
0.0137
0.0050
0.0033

0.0033
0.0016

−0.0066
0.0050
0.0109
0.0005

−0.0008
0.0041

−0.0066
0.0033
0.0005
0.0244



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TABLE III
COEFFICIENTS OF FUEL COST, POLLUTION EMISSIONS (P.U.) AND GENERATOR CAPACITIES (FOR CASE 1, IEEE-30 BUS)

Generator aij bij cij αij βij γij ξij λij Pmin
Gij

Pmax
Gij

G1,1 10 200 100 4.091 −5.554 6.490 2.0× 10−4 2.857 0.05 0.50

G1,2 10 150 120 2.543 −6.047 5.638 5.0× 10−4 3.333 0.05 0.60

G1,3 20 180 40 4.258 −5.094 4.586 1.0× 10−6 8.000 0.05 1.00

G1,4 10 100 60 5.426 −3.550 3.380 2.0× 10−3 2.000 0.05 1.20

G1,5 20 180 40 4.258 −5.094 4.586 1.0× 10−6 8.000 0.05 1.00

G1,6 10 150 100 6.131 −5.555 5.151 1.0× 10−5 6.667 0.05 0.60

TABLE IV
BEST SOLUTIONS FOR COST WITH EIGHT ALGORITHMS WHEN OPTIMIZING CASE 1

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission

BB-MOPSO 0.109 0.3005 0.5234 1.017 0.5238 0.3603 600.112 0.22220

LP 0.1500 0.3000 0.5500 1.0500 0.4600 0.3500 606.314 0.22330

NSGA 0.1567 0.2870 0.4671 1.0467 0.5037 0.3729 600.572 0.22282

NPGA 0.1080 0.3284 0.5386 1.0067 0.4949 0.3574 600.259 0.22116

SPEA 0.1062 0.2897 0.5289 1.0025 0.5402 0.3664 600.150 0.22151

NSGA-II 0.1059 0.3177 0.5216 1.0146 0.5159 0.3583 600.155 0.22188

FCPSO 0.1070 0.2897 0.525 1.015 0.5300 0.3673 600.132 0.22226

0.112123 0.299888 0.523763 1.01258 0.525818 0.359739 600.092 0.221813
PCRO 0.113147 0.30149 0.525301 1.00719 0.525455 0.36137 600.108 0.221366

0.113945 0.302306 0.527319 1.0044 0.524642 0.361385 600.123 0.22114

TABLE V
BEST SOLUTIONS FOR EMISSION WITH EIGHT ALGORITHMS WHEN OPTIMIZING CASE 1

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission

BB-MOPSO 0.4071 0.4591 0.5374 0.3838 0.5369 0.5098 0.194203 638.262

LP 0.4000 0.4500 0.5500 0.4000 0.5500 0.5000 0.194227 639.600

NSGA 0.4394 0.4511 0.5105 0.3871 0.5553 0.4905 0.194356 639.209

NPGA 0.4002 0.4474 0.5166 0.3688 0.5751 0.5259 0.194327 639.180

SPEA 0.4116 0.4532 0.5329 0.3832 0.5383 0.5148 0.194210 638.507

NSGA-II 0.4074 0.4577 0.5389 0.3837 0.5352 0.5110 0.194204 638.249

FCPSO 0.4097 0.4550 0.5363 0.3842 0.5348 0.5140 0.194207 638.358

PCRO 0.406447 0.457242 0.538921 0.384227 0.5381 0.509063 0.194203 638.102

TABLE VI
BEST SOLUTIONS FOR COST AND EMISSION OPTIMIZED INDIVIDUALLY FOR CASE 1

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission

Best cost 0.112123 0.299888 0.523763 1.01258 0.525818 0.359739 600.092 0.221813

Best emission 0.406447 0.457242 0.538921 0.384227 0.5381 0.509063 638.102 0.194203

B0 = [−0.0107 0.0060 − 0.0017 0.0009 0.0002 0.0030]

B00 = 9.8573× 10−4

The compared algorithms include SMOPSO [32], CMOPSO
[33], TV-MOPSO [31], and BB-MOPSO [8]. The experimental
results of SMOPSO, CMOPSO, TV-MOPSO are collected
from [8]. Table VII provides the best solutions for cost with
five algorithms with respect to optimizing Case 2, while
Table VIII presents the best solutions for emission with five

algorithms with respect to optimizing Case 2.
As shown in Table VII, except the PCRO, the BB-MOPSO

obtained the best solution with the minimum fuel cost
605.9817. However, our PCRO algorithm obtained a solution
with the objective values 603.108 and 0.217835, which dom-
inates the solution obtained by BB-MOPSO. Meanwhile, the
solutions obtained by SMOPSO, CMOPSO, and TV-MOPSO
are also dominated by the above solution (603.108, 0.217835,
0.0115006). It should be noted that the total transmission loss
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TABLE VII
BEST SOLUTIONS FOR COST WITH FIVE ALGORITHMS WHEN OPTIMIZING CASE 2

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission Loss

SMOPSO 0.1225 0.2899 0.5741 0.9932 0.5255 0.3547 606.0038 0.220522 0.02583

CMOPSO 0.1198 0.2928 0.5778 0.99 0.527 0.3524 606.0062 0.220414 0.02576

TV-MOPSO 0.1011 0.2883 0.5852 0.9832 0.5271 0.3749 606.1114 0.220503 0.02587

BB-MOPSO 0.1229 0.288 0.5792 0.9875 0.5255 0.3564 605.9817 0.220190 0.02562

PCRO 0.166457 0.313815 0.509591 0.985789 0.499901 0.369948 603.108 0.217835 0.0115006

TABLE VIII
BEST SOLUTIONS FOR EMISSION WITH FIVE ALGORITHMS WHEN OPTIMIZING CASE 2

PG1 PG2 PG3 PG4 PG5 PG6 Fuel cost Emission Loss

SMOPSO 0.4078 0.4824 0.5388 0.3977 0.5335 0.5093 646.0817 0.194216 0.03549

CMOPSO 0.4097 0.4648 0.5523 0.394 0.5361 0.5123 645.7762 0.194186 0.03515

TV-MOPSO 0.4188 0.4582 0.553 0.3803 0.5345 0.5251 647.665 0.194203 0.03583

BB-MOPSO 0.4103 0.4661 0.5432 0.3883 0.5447 0.5168 646.4847 0.194179 0.03537

PCRO 0.4074 0.4577 0.5389 0.3837 0.546409 0.511 640.752 0.194196 0.0111091

TABLE IX
STATISTICAL RESULTS OF THE METRIC SC FOR CASE 2

PCRO BB-MOPSO SMOPSO CMOPSO TV-MOPSO

SC(PCRO, ∗) − 0.3321 0.4752 0.4312 0.8231

SC(BB-MOPSO, ∗) 0.0912 − 0.4125 0.3148 0.6629

SC(SMOPSO, ∗) 0.0231 0.0471 − 0.2037 0.4802

SC(CMOPSO, ∗) 0.0378 0.0628 0.2243 − 0.5867

SC(TV-MOPSO, ∗) 0 0 0.1255 0.0926 −

experienced by the provided PCRO algorithm is also the
minimum among the five compared algorithms. From the
above analysis, we can conclude that PCRO is superior than
the other four compared algorithms.

From Table VIII, we can see that the proposed PCRO
algorithm obtains a solution with the fuel cost, emission,
and loss values equal to 640.752, 0.194196, and 0.0111091,
respectively. The results of CMOPSO and BB-MOPSO are
slightly better than the solution by PCRO considering the
emission value. However, our PCRO algorithm obtains a
solution with minimum fuel cost and loss values, that is, the
solution provided by PCRO is non-dominated by the results
of other algorithms. It can be concluded from Tables VII and
VIII that the proposed PCRO is efficient for solving the given
problem.

To evaluate the closeness of the obtained Pareto front to
the true Pareto front which is unknown in advance, the two-
set-coverage (SC) [8] is also adopted. Table IX gives the
comparison results among the five compared algorithms in
terms of SC. It can be seen from this table that: 1) At the worst
case, nearly 9% solutions obtained by PCRO are dominated
by BB-MOPSO. However, more than 30% the solutions
obtained by BB-MOPSO are dominated by the solutions of
PCRO, which shows the superior performance of PCRO; 2)
Comparing with SMOPSO, the solutions obtained by PCRO
dominate by more than 47% the solutions by SMOPSO; 3)
In comparison with CMOPSO and TV-MOPSO, the dominant
solution rates are about 43% and 82%, respectively. Thus, the
proposed PCRO algorithm is better than the four compared

algorithms in terms of the convergence performance.

C. Performance for Case 3
To further verify the performance of PCRO, in this section,

we take a four-area test system, which has four generators
in each area with different fuel and emission characteristics.
Table X gives the problem parameters. The transmission cost
is not considered in simulations since it is normally small as
compared with the total fuel costs. The compared algorithms
include MOPSO [19], TLBO [20], TV-MOPSO [31], and BB-
MOPSO [8]. All the compared algorithms are implemented in
the same environment to solve the given four-area test system.
The parameters for the compared algorithms are set as the
same with their references.

The minimum fuel costs and minimum emissions obtained
by the five compared algorithms are shown in Tables XI
and XII, respectively. As shown in Table XI, our PCRO
algorithm obtained a solution with the minimum fuel cost
1984.3, which is obviously better than the other four compared
algorithms. Table XII also shows that our PCRO algorithm can
obtain a better solution with minimum emission, which is also
obviously better than the other compared algorithms. From the
above analysis, we can conclude that PCRO is superior than
the other four compared algorithms.

Table XIII gives the comparison results among the five
compared algorithms in terms of SC for Case 3. It can be seen
from this table that: 1) At the worst case, nearly 5% solutions
obtained by PCRO are dominated by BB-MOPSO. However,
more than 40% the solutions obtained by BB-MOPSO are
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TABLE X
COEFFICIENTS OF FUEL COST, POLLUTION EMISSIONS (P.U.) AND GENERATOR CAPACITIES FOR CASE 3

Generator aij bij cij αij βij γij ξij λij Pmin
Gij

Pmax
Gij

PD

G1,1 150 189 0.50 0.016 −1.500 23.333 2.0× 10−4 2.122 0.0005 0.14

1.563

G1,2 115 200 0.55 0.031 −1.820 21.022 5.0× 10−4 1.233 0.0005 0.10
G1,3 40 350 0.60 0.013 −1.249 22.050 1.0× 10−6 6.000 0.0005 0.13
G1,4 122 315 0.50 0.012 −1.355 22.983 1.0× 10−3 1.523 0.0005 0.12
G2,1 125 305 0.50 0.020 −1.900 21.313 1.0× 10−6 8.000 0.0005 0.25
G2,2 70 275 0.70 0.007 0.805 21.900 3.0× 10−5 5.167 0.0005 0.12
G2,3 70 345 0.70 0.015 −1.401 23.001 2.0× 10−4 3.857 0.0005 0.20
G2,4 70 345 0.70 0.018 −1.800 24.003 2.0× 10−4 3.333 0.0005 0.18
G3,1 130 245 0.50 0.019 −2.000 25.121 1.0× 10−6 7.000 0.0005 0.30
G3,2 130 245 0.50 0.012 −1.360 22.990 2.0× 10−3 3.000 0.0005 0.30
G3,3 135 235 0.55 0.033 −2.100 27.010 1.0× 10−6 6.000 0.0005 0.30
G3,4 200 130 0.45 0.018 −1.800 25.101 1.0× 10−5 1.667 0.0005 0.30
G4,1 70 345 0.70 0.018 −1.810 24.313 2.0× 10−4 3.857 0.0005 0.11
G4,2 45 389 0.60 0.030 −1.921 27.119 5.0× 10−4 5.233 0.0005 0.20
G4,3 75 355 0.60 0.020 −1.200 30.110 1.0× 10−6 4.000 0.0005 0.30
G4,4 100 370 0.80 0.040 −1.400 22.500 2.0× 10−3 3.000 0.0005 0.30

TABLE XI
BEST SOLUTIONS FOR COST WITH FIVE ALGORITHMS WHEN OPTIMIZING CASE 3

Generator MOPSO TLBO TV-MOPSO BB-MOPSO PCRO
G1,1 0.139926 0.139982 0.13899 0.139905 0.139946
G1,2 0.099853 0.099803 0.099833 0.099952 0.099991
G1,3 0.002959 0.025094 0.030394 0.005454 0.0005
G1,4 0.052366 0.051502 0.060031 0.063758 0.000618
G2,1 0.03127 0.010464 0.055248 0.070681 0.000509
G2,2 0.110544 0.10667 0.027646 0.033566 0.118505
G2,3 0.000501 0.077181 0.005309 0.000971 0.0005
G2,4 0.089786 0.023774 0.037031 0.025494 0.0005
G3,1 0.299449 0.299951 0.299866 0.299866 0.299872
G3,2 0.229105 0.248026 0.248978 0.214019 0.299997
G3,3 0.159958 0.175195 0.259944 0.293495 0.299965
G3,4 0.299342 0.299998 0.291186 0.296869 0.3
G4,1 0.004985 0.001582 0.001011 0.011492 0.000501
G4,2 0.000501 0.002745 0.004655 0.004655 0.0005
G4,3 0.040074 0.0005 0.000587 0.000587 0.000503
G4,4 0.002382 0.000532 0.002292 0.002238 0.0005

Fuel cost 2005.21 2002.35 1998.64 1995.8 1984.3
Emission 0.06352 0.066351 0.069858 0.071642 0.087263

dominated by the solutions of PCRO, which shows the superior
performance of PCRO; 2) The solutions obtained by PCRO
dominate by more than 50% the solutions by MOPSO; 3)
In comparison with TLBO and TV-MOPSO, the dominant
solution rates are about 50% and 87%, respectively. Thus, the
proposed PCRO algorithm is better than the four compared
algorithms in terms of the convergence performance with
respect to optimizing the four-area test problem.

VI. CONCLUSION

This paper presents an improved chemical-reaction opti-
mization algorithm for solving the multi-area environmen-
tal/economic dispatch optimization problems. From the ex-
perimental comparison results, we can see that the proposed
PCRO is efficient for solving the MAEED problems, the
main reasons are as follows: 1) In the PCRO algorithm, the

improved four elementary reactions, i.e., on-wall ineffective
collision, inter-molecular ineffective collision, decomposition,
and synthesis, can increase the local and global search abilities
of the algorithm; 2) The encoding mechanism can dynamically
enhance the performance of the proposed algorithm; 3) The
five neighborhood structures and the self-adaptive neighbor-
hood structure selection mechanism further improve the local
search ability while maintaining population diversity; 4) The
grid-based crowding distance strategy can obviously enable
the algorithm to easily converge near the Pareto front; 5)
The kinetic-energy-based search procedure further enhances
the global search ability.

In future work, we will apply the proposed PCRO algorithm
to solve other multi-objective problems in realistic energy con-
version systems, and also to develop more efficient algorithm
considering self-adaptive strategies similar as [34].
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TABLE XII
BEST SOLUTIONS FOR EMISSION WITH FIVE ALGORITHMS WHEN OPTIMIZING CASE 3

Generator MOPSO TLBO TV-MOPSO BB-MOPSO PCRO

G1,1 0.102099 0.138962 0.137804 0.122113 0.10281

G1,2 0.022984 0.019904 0.073998 0.019401 0.099945

G1,3 0.042862 0.106588 0.083665 0.038608 0.108018

G1,4 0.054979 0.054159 0.033498 0.027472 0.101981

G2,1 0.107218 0.126632 0.080965 0.238099 0.125076

G2,2 0.07819 0.0957 0.035857 0.011861 0.060398

G2,3 0.184189 0.093039 0.030348 0.13827 0.098183

G2,4 0.093428 0.025588 0.152 0.115749 0.108088

G3,1 0.079913 0.186599 0.154764 0.196559 0.100646

G3,2 0.171853 0.105365 0.246422 0.101207 0.08787

G3,3 0.19304 0.133821 0.151412 0.170449 0.102841

G3,4 0.049633 0.052267 0.060631 0.174155 0.102338

G4,1 0.09496 0.042656 0.100196 0.067332 0.108082

G4,2 0.134719 0.182205 0.06064 0.067166 0.090858

G4,3 0.0675 0.101618 0.044723 0.059173 0.076017

G4,4 0.085432 0.097897 0.116078 0.015387 0.089851

Fuel cost 2107.55 2105.25 2084 2071.47 2098.88
Emission 0.034481 0.034796 0.036498 0.038289 0.023902

TABLE XIII
STATISTICAL RESULTS OF THE METRIC SC FOR CASE 3

PCRO BB-MOPSO MOPSO TLBO TV-MOPSO

SC(PCRO, ∗) – 0.4151 0.5123 0.5012 0.8721

SC(BB-MOPSO, ∗) 0.0571 – 0.3795 0.3015 0.6915

SC(MOPSO, ∗) 0.0121 0.0378 – 0.1928 0.4357

SC(TLBO, ∗) 0.0232 0.0515 0.2315 – 0.5691

SC(TV-MOPSO, ∗) 0 0 0.1488 0.0815 –
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