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a b s t r a c t

This paper proposes an energy-aware multi-objective optimization algorithm (EA-MOA) for solving the
hybrid flow shop (HFS) scheduling problem with consideration of the setup energy consumptions. Two
objectives, namely, the minimization of the makespan and the energy consumptions, are considered
simultaneously. In the proposed algorithm, first, each solution is represented by two vectors: the ma-
chine assignment priority vector and the scheduling vector. Second, four types of decoding approaches
are investigated to consider both objectives. Third, two efficient crossover operators, namely, Single-
point Pareto-based crossover (SPBC) and Two-point Pareto-based crossover (TPBC) are developed to
utilize the parent solutions from the Pareto archive set. Then, considering the problem structure, eight
neighborhood structures and an adaptive neighborhood selection method are designed. In addition, a
right-shifting procedure is utilized to decrease the processing duration for all machines, thereby
improving the energy consumption objective of the given solution. Furthermore, several deep-
exploitation and deep-exploration strategies are developed to balance the global and local search abil-
ities. Finally, the proposed algorithm is tested on sets of well-known benchmark instances. Through the
analysis of the experimental results, the highly effective proposed EA-MOA algorithm is compared with
several efficient algorithms from the literature.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The HFS scheduling problem is one generalization of the clas-
sical flow shop scheduling problem (FSSP), which has been verified
to be a Non-deterministic Polynomial-time hard (NP-hard) prob-
lem (Ruiz and V�azquez Rodríguez, 2010; Ribas et al., 2010). In an
HFS problem, two types of tasks should be considered simulta-
neously: assigning machines for each job and scheduling each job
on each assigned machine. Therefore, the HFS problem is harder
than the classical FSSP due to the additional consideration of par-
allel device selection for each job. Many published papers have
discussed solving the HFS problemwith many different algorithms.
We can classify these algorithms by the number of stages in the
considered problems. There are three types of problems: two-stage,
nce and engineering, Shandong No
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three-stage, and m-stage. The two-stage problem is the HFS prob-
lem with two consecutive stages, while the m-stage problem has a
series of m stages. Gupta (1988) studied the HFS problemwith two
stages where there is only one device in the second stage. Lin and
Liao (2003) investigated the same problem with setup time and
dedicated machines. Riane et al. (1998) developed an efficient
heuristic for minimizing the makespan in a three-stage HFS prob-
lem. Carlier and Neron (2000) proposed an exact algorithm for
solving the multi-processor flow shop. The benchmark problems
that they generated were used in many studies as test problems.

The HFS with m stages is closer to the production reality.
Therefore, it has been the focus of more research. Exact algorithms
were first applied to solve the m-stage HFS problem, such as the
Lagrange method (Chang and Liao, 1994) and the B&B algorithm
rmal University, 250014, PR China.
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i index of jobs, i¼ 1,2 …,n.
k index of machines, k¼ 1,2, …,m.
j index of stages, j¼ 1,2, …, s.
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(Portmann et al., 1998). However, exact algorithms have limited
ability to solve HFS problems with large scales. During recent years,
heuristic and meta-heuristic algorithms have been developed to
solve HFS problems, including genetic algorithm (GA) (Oguz and
Ercan, 2005; Engin et al., 2011), artificial bee colony (ABC) (Li and
Pan, 2015; Li et al., 2016a,b; Pan, 2016), iterated greedy (IG) (Ying
et al., 2014), cuckoo search algorithm (CSA) (Marichelvam et al.,
2014a,b), parallel tabu search algorithm (PTSA) (Bo _zejko et al.,
2013), particle swarm optimization (PSO) (Liao et al., 2012; Chou,
2013), estimation of distribution algorithm (EDA) (Wang et al.,
2015), bi-layer optimization approach (BLO) (Jiang et al., 2015),
artificial immune system (AIS) (Chung and Liao, 2013), local search
method (Lei and Guo, 2016), ant colony optimization (ACO) (Qin
et al., 2015), bat algorithm (Marichelvam et al., 2013), and fruit-
fly optimization algorithm (FOA) (Li et al., 2016a,b). Very recently,
some hybrid meta-heuristics have also been designed to solve HFS
problems, such as a hybrid of GA and TS (Sukkerd and
Wuttipornpun, 2016), a hybrid of ABC algorithm and several heu-
ristics (Pan et al., 2014), a hybrid of ABC and TS (Li and Pan, 2015), a
combination of GA and imperialist competitive algorithms (ICA)
(Moradinasab et al., 2013), and a hybrid of variable neighborhood
search (VNS) algorithms (Li et al., 2014a,b). Some meta-heuristics
have better global search abilities, while others have better local
search abilities. Therefore, well-designed hybrid algorithms can
always obtain better performances than single algorithms. How-
ever, most of the current literature about HFS problems has not
considered machine differences in terms of power consumption
capabilities.

In recent years, multi-objective optimization algorithms have
been considered and studied in many fields (Deb et al., 2002; Deb
and Jain, 2014; Zhang and Li, 2007; Marichelvam et al., 2014a,b;
Wang and Liu, 2014; Huang et al., 2015; Tran and Ng, 2013;
Shahvari and Logendran, 2016; Pan et al., 2011). Several multi-
objective optimization algorithms have been proposed, such as
NSGA-II (Deb et al., 2002), NSGA-III (Deb and Jain, 2014), and
MOEA/D (Zhang and Li, 2007). Most of the published multi-
objective algorithms have been investigated to solve continuous
optimization problems. There is less literature on solving multi-
objective HFS problems. Marichelvam et al. (2014a,b) proposed a
discrete firefly algorithm to solve the HFS problem considering two
objectives, i.e., makespan and the mean flow time. Wang and Liu
(2014) investigated the HFS problem with minimization of the
unavailability of the first stage machine and the makespan. Huang
et al. (2015) developed a subgroup PSO approach for solving multi-
objective two-stage HFS problems. Tran and Ng (2013) presented a
hybrid water flow algorithm for this problem considering the
minimization of themakespan and the total tardiness. Shahvari and
Logendran (2016) presented a TS-based algorithm for the minimi-
zation of two objectives simultaneously, i.e., the weighted sum of
the total weighted completion time and the total weighted tardi-
ness. It can be concluded from the above analysis that there is less
literature inwhich themulti-objective features in HFS problems are
considered, especially with the consideration of the energy effi-
ciency characteristics.

Nowadays, energy efficient algorithms are being investigated by
increasing numbers of researchers (Gahm et al., 2016; Che et al.,
2016). Zhang et al. (2014) utilized a time-indexed integer pro-
gramming formulation to minimize the electricity cost and the
carbon footprint under time-of-use tariffs in flow shop environ-
ments. For the permutation flow shop problems, Ding et al.
(2016a,b) designed a multi-objective NEH algorithm (MONEH),
where NEH is short for Nawaz et al. (1983), and a modified multi-
objective iterated greedy (MMOIG) algorithm to minimize the to-
tal energy consumption and the makespan. For parallel machine
scheduling problems, Ding et al. (2016a,b) proposed a time-
interval-based mixed integer linear programming formulation to
minimize the total electricity cost. Zhang and Chiong (2016)
investigated an enhanced local search for minimizing the total
weighted tardiness and the total energy consumption in job shop
horizons. Luo et al. (2013) developed a hybrid algorithm based on
the ant colony optimization method to solve the HFS problems
considering the electric power cost (EPC) in the presence of time-
of-use (TOU) electricity prices. Dai et al. (2013) presented a ge-
netic simulated annealing algorithm for making a significant trade-
off between the makespan and the total energy consumption in
flexible flow shop horizons. For the same problem, Tang et al.
(2016) utilized an improved particle swarm optimization method.
Lu et al. (2017) considered two objectives namely the makespan
and the energy consumption in permutation flow shop scheduling
problem. There is less literature on minimization of both the
makespan and the energy consumption in HFS problems, and there
is no published literature inwhich the setup energy consumption is
considered.

In realistic HFS environments, some stages contain multiple
devices with different processing capabilities. In addition, each
machine usually contains two states, i.e., the working state and the
standby state. In each state, the machine will consume different
volumes of energy. Furthermore, the setup energy consumption
should be considered because it is significant in practice. The main
reason for considering the setup energy consumption is that, setup
energy consumption may occur when the setup operation is per-
formed to clear the previous job from the certain container, for
example, some types of iron in a torpedo. Different pairs of jobs
may require different energy consumptions for the setup or
clearing procedure. Therefore, in this study, we consider energy
efficiency in HFS problems and minimize the energy consumptions
and makespan. The rest of this paper is organized as follows: Sec-
tion 2 gives the problem description. Then, the proposed algorithm
is presented in Section 3. Section 4 reports the experimental results
and compares themwith those of other algorithms in the literature
to evaluate the performance of the proposed algorithm. Finally, the
last section presents the conclusions of our work.
2. Problem description

2.1. Notations and constraints

In an HFS problem, there are n tasks to be processed on m de-
vices in a predefined order. All tasks and devices are available at
time zero. Pre-emption is not allowed, that is, no task can be
interrupted before the completion of its current operation. Setup
times and setup energy consumptions are considered. Problem
data are deterministic and known in advance. There are unlimited
intermediate buffers between successive stages. The objective of an
HFS problem is to schedule each task on each device such that the
makespan and energy consumptions are minimized. The notations
that are used in this paper are summarized below:

C Indices



J.-q. Li et al. / Journal of Cleaner Production 181 (2018) 584e598586
C Parameters
n total number of jobs.
m total number of machines.
s total number of stages.
Oi;j the jth operation of job i.
pi;j the processing time requirement of job i at stage j.
PMj set of parallel machines at stage j.
Mk the kth machine.
pek the energy consumption index of machine Mk for processing operations.
iek the energy consumption index of machine Mk for standby state.
STi;h the setup time for processing immediate consecutive jobs of i and h.
SEi;h the setup energy consumption for processing immediate consecutive jobs

of i and h.
J set of n jobs, J¼ {J1, J2, …, Jn}.
C Decision variables
si;j starting time of job i at stage j.
ci;j completion time of job i at stage j.

Bktime
total busy time of Mk for processing operations.

Iktime
total idle time of Mk .

cmax the completion time of the last job on the
last machine in the last stage.

TEC total energy consumptions.
Based on the above notations and variables, two objectives are
considered. The first objective is to minimize the maximum
completion time cmax ¼ max

1�i�n
ci;s. The second objective is to mini-

mize the total energy consumptions (TEC), which includes two
types of energy consumptions: (1)
TEC1 ¼Pm

k¼1ðBktime$pek þ Iktime$iekÞ: the energy consumptions dur-

ing the processing and standby states for all machines, where Iktime is
calculated as follows: let t1 be the last completion time onMk, t2 be
the earliest starting time to process operations on Mk, then we get
Iktime ¼ t1� t2� Bktime; and (2) TEC2: the energy consumptions dur-
ing the setup process for each pair of consecutive jobs that are
processed on the same machine.

The following assumptions and constraints are imposed in this
study:

C All machines and operations are simultaneously available at
time zero.

C There are no disruptions during processing times.
C Preemption is not considered, that is, all operations are

processed continuously and not interrupted.
C There is infinite buffer or storage between any two consec-

utive stages.
C Each machine can process at most one operation at a time

and each operation is processed on at most one machine at a
time.

C The processing time for each operation is a positive integer.
C No two operations overlap on the same machine, i.e., the

start time of the succeeding job must be greater than the
completion time of its immediately preceding job plus the
setup time between them.

C The starting time of any operation is greater than or equal to
its release time from the previous stage.

C All operations are assigned strictly to one machine at each
stage.

C Each operation has at most one immediately preceding or
succeeding operation on the same machine.

C The set of parallel machines at different stage has no inter-
section with each other.
2.2. Example instance

The following example will help in illustrating this complex
problem. Consider an instance with five jobs and three stages.
There are two parallel machines in the first two stages and one
machine in the last stage, that is, n¼ 5, m¼ 5, PM1¼ {M1, M2},
PM2¼ { M3, M4}, and PM3¼ { M5}. The processing times pij, the
setup times STih, the processing energy consumption index pek, the
standby energy consumption index iek, and the setup energy con-
sumption SEi;h are given as follows.

h
pi;j
i
5�3

¼

2
66664
20 30 30
30 30 30
30 30 30
40 30 30
30 30 30

3
77775

½STih� ¼

2
66664

0 10 10 10 10
10 0 10 10 10
10 10 0 15 10
10 10 15 0 18
10 10 10 18 0

3
77775

½pek�3�2 ¼
2
42:5 1:5

1 1:5
2 �

3
5

½iek�3�2 ¼
2
40:05 0:01

0:1 0:05
0:05 �

3
5

½SEih� ¼

2
66664

0 10 10 10 10
10 0 10 10 10
10 10 0 15 10
10 10 15 0 18
10 10 10 18 0

3
77775

The Gantt chart of a solution for the above problem instance is
shown in Fig. 1, where each operation is represented by a rectangle
that is labeled with the job number. For example, in the first stage,
job J1 is processed on the first machine followed by jobs J3 and J5.
The makespan is 250. To compute the energy consumption objec-
tive value, we should compute the processing energy consump-
tions, the standby energy consumptions and the setup energy
consumptions. For the example in Fig. 1, the energy consumption
unit is mega joules (MJ) and the time unit is seconds. In the first
stage, M1 is busy processing J1 from time 0e20 s. Therefore, M1

consumes a processing energy of 2.5 � 20¼ 50MJ for processing J1
in the first stage. In the first stage,M1 is busy for 20þ 30þ30¼ 80 s
and consumes a processing energy of 2.5 �80¼ 200MJ. In the
second stage,M3 is idle while waiting for J4, and the standby energy
consumption of M3 is 0.1 � 30¼ 3MJ.
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2.3. Pareto concepts

A multi-objective optimization (MOO) problem is generally
formulated as follows (Deb et al., 2002; Deb and Jain, 2014; Zhang
and Li, 2007):

min{f1ðxÞ ¼ z1;…; fnðxÞ ¼ zn}
such that x2D
where solution x ¼ ½x1;…; xn� is called the vector of decision

variables, and D is the set of feasible solutions. We list the main
Pareto concepts as follows:

C Pareto dominance: Let x and y be two solutions for the given
problem. We write x3y or x dominates y if cj xj � yj, and
xj < yj for at least one j.

C Pareto optimal solution: A solution x is Pareto optimal if
there is no solution y2D that dominates x.

C Pareto front: The set of all Pareto optimal solutions in the
objective space is generally called the non-dominated set or
the Pareto front.
3. Proposed algorithm

3.1. Solution representation

For solving HFS problems, the classical solution representation
is mainly classified into two categories: the permutation based
representation, and the representation considering both the rout-
ing and the scheduling parts (Tang et al., 2016). In the permutation-
based representation, each solution is represented by a string of
integers. Each integer in the string corresponds to a task number.
Thus, the length of the string is equal to n. In this study, we develop
a novel encoding representation, which is given as follows:

C For the scheduling part, we introduce the permutation-based
solution representation, because of its simplicity and ease of
implementation. For the example problem in Fig. 1, the so-
lution is {1,2,3,4,5}.

C For the routing part, we design a machine selection priority
vector, which can be used to select machine as a priority
vector. One example routing part vector is {{2,1},{1,2},{1}},
which indicates the following: (1) In the first stage, if two
parallel machines that satisfy the selection rule that is
defined in subsection 3.2 are waiting to process the same
operation, M2 will be selected first. (2) In the second stage,
M1 will be selected if the two machines that satisfy the se-
lection condition are waiting for the same operation. It
should be noted that the route priority is only used for the
situation in which multiple machines that satisfy the selec-
tion condition are waiting for to process the same operation.
For the above example, if only M1 satisfies the selection rule
1
2 4

1th stage

2th stage

3th stage

3 5

1
2 3 5

1 2 3 54

0 50 100 150 200 250

setup time=10

4

setup energy consumption

idle time=30

20 60 100

30 80

Fig. 1. Example Gantt chart.
in the first stage, then the operation will be processed on M1
rather than on M2.

3.2. Decoding

The solution encoding that is defined above contains no ma-
chine selection (routing) information in each stage. To decode a
solution, we should consider two issues simultaneously, i.e., the job
schedule and the machine assignment. The job scheduling rule is
given as follows: (1) in the first stage, schedule each job one by one
according to job sequence in the solution representation; and (2) in
the other stages, each job will be scheduled as soon as it completes
its previous operation.

For the machine assignment, we propose four types of decoding
heuristics: (1) the first available machine strategy, which is named
DE-I, where the first available machine is assigned to the waiting
job. If more than one machine satisfies the available time simul-
taneously, then select the machine with the highest priority by
referring to the machine priority vector; (2) the machine selection
strategy with consideration of the minimum setup time, which is
named DE-II. When one job is to be scheduled, it will select the
machine on which the last processing operation has the minimum
setup time with the current operation. If several machines satisfy
the selection rule, then refer to the machine priority as well; (3) the
machine selection strategy with consideration of the minimum
setup energy consumption, which is named DE-III. When one job is
to be scheduled, it will select the machine on which the last pro-
cessing operation has theminimum setup energy consumptions for
the current operation. The machine priority also will be referenced;
and (4) the hybrid machine selection strategy, which is named DE-
IV. When one job is to be scheduled, it will select the machine
according to the following rules: (a) Select the machine with the
first available time. (b) If there exist several machines with the
same available time, select the one on which the last processing
operation has the minimum setup energy consumption for the
current operation. (c) If there are several available machines that
satisfy the first two conditions, select themachine onwhich the last
processing operation has the minimum setup time for the current
operation.

3.3. Right shifting heuristic

For the given solution, if wemaintain the completion time of the
last processing operation on each machine at the last stage, and
right-shift the other operations, then both the machine idle time
and the energy consumption in the standby state for each machine
will be decreased. Therefore, in this section, we present a right-
shifting strategy, which is given in Fig. 2. As an example, Fig. 3
shows the Gantt chart before the right-shifting procedure, while
Fig. 4 presents the Gantt chart after the right-shifting procedure.
According to the two figures, the right-shifting procedure improves
the solution. The time complexity of the right-shifting heuristic is
OðsnmÞ, where s is the number of stages, m is the number of ma-
chines, and n represents the number of jobs.

3.4. Initialization of the population

The initial population quality is crucial for the proposed algo-
rithm. An initial populationwith high levels of quality and diversity
may result in a faster convergence to accurate solutions. In this
study, we employ the following simple initialization approach:

Step 1 Let counter Cnt¼ 1.
Step 2 If Cnt¼ Ps, stop the procedure; otherwise, randomly produce

a solution.



Procedure right-shifting()

Input: a solution

Output: the scheduling Gantt chart 

Step 1: For each stage, schedule each operation according to a selected decoding heuristic, 

as discussed in sub-section 3.2. The starting and completion times of each operation 

on each machine at each stage are recorded. Let the current maximum completion 

time be .1
Step2. Record the last processing operation on each machine at the last stage into the set 

LP. Let the completion time of each operation in LP be .1
Step 3: From the last stage to the first stage, right shift the other operations, except the 

operations in LP, as compactly as possible, that is, to decrease the idle time of each 

machine.

End

Fig. 2. Right-shifting heuristic.
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Step 3 Evaluate the newly generated solution by using a randomly
selected decoding heuristic, as discussed in section 3.2.

Step 4 If the newly generated solution is different from all solu-
tions in the current population, add it into the population,
use it to update the initial Pareto archive set, and set
Cnt¼ Cnt þ1; otherwise, discard it.

Step 5 Return to Step 2.

3.5. Neighborhood structure

In this study, based on the problem structure, eight neighbor-
hood structures are proposed:

C One swapping or insertion scheduling neighborhood, which
is denoted by N1. (1) Randomly select two positions in the
scheduling vector; (2) Randomly perform one of the
following two operations: (a) swap the two operations at the
two positions; (b) insert one of the operations one position
before or after the position of the other operation.

C One swapping or insertion routing neighborhood, which is
denoted byN2. (1) Randomly select one stagewithmore than
two parallel machines; (2) randomly select two positions in
the route vector; (3) Randomly perform one of the following
two operations: (a) swap the two machines at the two
1
2 4

Stage 1

Stage 2

Stage 3

3 5

4
1 3

1 2 3
4 5

0 50 100 150

2
5

Fig. 3. Gantt chart before applying the right-shifting heuristic.
selected positions; (b) insert one of the machines one posi-
tion before or after the other position of the other machine.

C Multiple swapping or insertion scheduling neighborhood,
which is denoted by N3. (1) Randomly select a number h in
[1,5]; (2) Perform one swapping or insertion scheduling
neighborhood h times.

C Multiple swapping or insertion routing neighborhood, which
is denoted by N4. (1) Randomly select a number h in [1,5]; (2)
Perform one swapping or insertion routing neighborhood h
times.

C One scheduling and one routing neighborhood, which is
denoted by N5. Perform N1 and N2 simultaneously.

C One scheduling andmultiple routing neighborhood, which is
denoted by N6. Perform N1 and N4 simultaneously.

C Multiple scheduling and one routing neighborhood, which is
denoted by N7. Perform N2 and N3 simultaneously.

C Multiple scheduling and multiple routing neighborhood,
which is denoted by N8. Perform N2 and N4 simultaneously.
3.6. Adaptive neighborhood structure

To balance the exploration and exploitation capabilities of the
1
2 4

Stage 1

Stage 2

Stage 3

3 5

4
1 3

1 2 3
4 5

0 50 100 150

2
5

Fig. 4. Gantt chart after applying the right-shifting heuristic.
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proposed algorithm, we introduce an extended version of the
adaptive neighborhood structure in (Li et al., 2014a,b), to apply
different neighborhood structures during the evolution phase. The
detailed implementation of the adaptive neighborhood structure is
as follows:

Step 1 In the initialization phase, the eight neighborhood struc-
tures are randomly inserted into the neighbor list (NL).

Step 2 During the evolution, each neighborhood structure in the
first available position of the NL is selected to produce a
neighboring solution. If the neighboring solution is not
worse than the previous solution (i.e., it dominates or is
non-dominated by the previous solution), the winner
neighbor list (WNL) is updated with the selected neigh-
borhood structure.

Step 3 The update processes of the two neighbor lists, namely, NL
and WNL, are similar to those in (Li et al., 2014a,b), except
that, in the proposed algorithm, during the deep-
exploitation phase, NL is also used to select a neighbor-
hood structure, and WNL is also updated if the newly
generated neighboring solution is not worse than the pre-
vious one.
3.7. Local search phase

3.7.1. Exploitation phase
The local optimization method is generally considered the main

component of an optimization algorithm (Pan et al., 2009). In the
proposed algorithm, the detailed steps of the exploitation phase are
given as follows:

Step 1 For each solution in the current population, randomly select
one neighborhood structure and apply the selected neigh-
borhood structure to generate one neighboring solution.

Step 2 Evaluate the newly generated solution and perform the
following replacement processes:

Step 3 Update the current solution: If the newly generated solution
dominates the current solution, then replace the latter; Step
4. Update the external Pareto archive set. (1) If the neigh-
boring solution dominates any solution in the external
Pareto archive set, then delete the solutions that are domi-
nated by it and insert it into the external Pareto archive set.
(2) If the newly generated solution is not dominated by any
solution in the external Pareto archive set, then insert it into
the set.
3.7.2. Deep-exploitation phase
To achieve a deep level of exploitation for the given solution, we

propose a deep-exploitation function, which consists of the
following steps:

Step 1 For each non-dominated solution in the Pareto archive set,
perform the following steps:

Step 2 Generate a random number r. If r is less than the given deep-
exploitation probability DEp, then perform step 3; other-
wise, stop the procedure.

Step 3 Perform the following steps DEt times:
Step 4 Obtain a neighborhood structure from the neighbor list NL,

and produce a neighboring solution Sn around the current
solution Sc by using the selected neighborhood structure.

Step 5 Evaluate the newly generated neighboring solution Sn. Then,
perform the following two procedures: update the current
solution and update the external Pareto archive set, which
are similar to steps 3 and 4 in sub-section 3.7.1
3.8. Global search phase

3.8.1. Crossover operators
In the proposed algorithm, the crossover operators are used to

generate a new solution from other solutions. The most commonly
used crossover operators, namely, Single-point crossover (SPC) and
Two-point crossover (TPC), are included. Because the encoding
mechanism is different from those in other studies, the SPC and TPC
operators are also different. Furthermore, we proposed two addi-
tional efficient crossover operators: Single-point Pareto-based
crossover (SPBC) and Two-point Pareto-based crossover (TPBC).
The main difference between SPBC and SPC is that the former se-
lects two parent solutions from the Pareto archive set in a random
way.

Given two parent solutions p1 and p2 that have been randomly
selected from the Pareto archive set, the newly generated child
solutions are named c1 and c2. The detailed implementations of the
crossover operators are described as follows:

C Single-point Pareto-based crossover: For the scheduling part,
perform the following two steps: (1) for the two parent so-
lutions p1 and p2, randomly select one position r1 in the
scheduling part; (2) let the elements before r1 in the sched-
uling parts of c1 and c2 learn from p1 and p2, respectively, and
let those in the following part learn from p2 and p1; (3) repair
the elements in c1 and c2. For the routing part, perform the
following four steps: (1) randomly select a stage rs withmore
than one parallel machine; (2) in stage rs, randomly select
one machine position m1; (3) let the elements before m1 in
the routing parts of c1 and c2 learn from p1 and p2, respec-
tively, and let those in the following part learn from p2 and
p1; (4) repair the elements in c1 and c2.

C Two-point Pareto-based crossover: For the scheduling part,
perform the following two steps: (1) for the two parent so-
lutions p1 and p2, randomly select two positions r1 and r2 in
the scheduling part; (2) let the elements between r1 and r2 in
the scheduling parts of c1 and c2 learn from p2 and p1,
respectively; (3) fill in the blank positions in the scheduling
parts of c1 and c2 with the remaining elements in p1 and p2,
respectively, according to their occurrence orders. For the
routing part, perform the following four steps: (1) randomly
select a stage rs with more than one parallel machine; (2) in
stage rs, randomly select two machine positions m1 and m2;
(3) let the elements between m1 and m2 in the routing parts
of c1 and c2 learn from p2 and p1, respectively; (4) fill in the
blank positions in the routing parts of c1 and c2 with the
remaining elements in p1 and p2, respectively, according to
their occurrence orders. The numerical example of the two-
point Pareto-based crossover is given in Fig. 5. In Fig. 5(b), the
third stage is selected and the machine priority vectors that
correspond to the selected stage are selected to perform the
two-point crossover.
3.8.2. Deep exploration phase
To prevent the algorithm from becoming stuck in a local opti-

mum, a solution is abandoned if it can't be improved after a spec-
ified number of generations (Pan et al., 2009; Fu et al., 2015). Then,
a random solution replaces the abandoned solution to maintain a
high level of diversity in the population. In this study, we apply the
following steps:
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Fig. 5. Two-point Pareto-based crossover.
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Fig. 6. Framework of the proposed algorithm.
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Step 1 By using the eight neighborhood structures, generate eight
neighboring solutions around the abandoned solution and
eight neighboring solutions around a randomly selected
solution from the Pareto archive set.

Step 2 Apply the Pareto non-dominated sorting procedure to the
sixteen neighboring solutions, and randomly select one
solution in the first Pareto front as the current solution.
3.9. Framework of the proposed algorithm

The framework of the proposed algorithm is illustrated in Fig. 6.
The detailed steps of the proposed EA-MOA algorithm are as
follows:

Step 1 Initialization phase

Step 1.1 Set the system parameters.
Step 1.2 Initialize the population.
Step 2 Apply the non-dominated sorting function to the initial
population, and initialize the Pareto archive set using the
first level of the Pareto front of the initial population.

Step 3 If the stopping criterion is satisfied, output the best Pareto
solutions; otherwise, perform steps 4 to 8.

Step 4 Exploitation search phase

Step 4.1 For each solution in the current population,

perform the following steps:
Step 4.2 Select the first neighborhood structure in the

winner neighbor list (WNL) to generate a neigh-
boring solution.

Step 4.3 Evaluate the newly generated solution, and update
the winner neighbor list (WNL) by the following
rules: (1) if the neighboring solution is not worse
than the current solution, that is, if the neighboring
solution dominates the current one or is non-
dominated by the latter, then update the WNL by
using the currently selected neighborhood struc-
ture; (2) if the neighboring solution is dominated
by the current one, then update the NL.
Step 5 Deep-exploitation phase.

Step 5.1 For each solution in the Pareto archive set, perform

the following steps:
Step 5.2 Perform the deep-exploitation procedure, as dis-

cussed in section 3.7.2.
Step 5.3 Apply the non-dominated sorting function to the

newly generated neighboring solutions and update
the Pareto archive set by using neighboring solu-
tions in the first Pareto front level.

Step 5.4 Update the winner neighbor list (WNL) by using
the neighborhood structures that have been used
to generate a non-dominated neighboring
solution.
Step 6 Exploration search phase.

Step 6.1 Perform the following steps Psize/2 times:
Step 6.2 Select two parent solutions by using the following

two rules in a random way: (1) randomly select
two solutions from the current population; (2)
randomly select two solutions from the Pareto
archive set.

Step 6.3 Apply the single-point or two-point crossover
function in a random way by using the two
selected parent solutions.

Step 6.4 Insert the two neighboring solutions into a tem-
porary neighbor set NS.

Step 6.5 Combine the current populationwith the neighbor
set NS to generate a whole population, and apply
the non-dominated sorting function to the whole
population.
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Step 6.6 Generate the next population from the first levels
in the Pareto front. For the last Pareto level, use the
crowding-distance approach.

Step 6.7 Update the winner neighbor list (WNL) by using
the neighborhood structures that have been used
to generate a non-dominated neighboring
solution.
Step 7 Deep-exploration phase. If a solution in the population has
not been improved during the limit trials, abandon it and
utilize the deep-exploration function, as discussed in sec-
tion 3.8.2.
4. Experiment results

This section discusses the computational experiments that were
used to evaluate the performance of the proposed algorithm. Our
algorithmwas implemented in Cþþ on an Intel Core i5 3.3 GHz PC
with 4GB memory. The compared algorithms were NSGA-II (Deb
et al., 2002), MOEA/D (Zhang and Li, 2007), DBEA (Asafuddoula
et al., 2015) and EADD (Li et al., 2015a,b). All four compared algo-
rithms utilize the same coding mechanism, the same initialization
function, and the same stopping criterion. Different from the pro-
posed EA-MOA, the four compared algorithms include the
following features: (1) for decoding, the compared algorithms use
the first available machine first service rule; (2) for the mutation
operator, the compared algorithms randomly select the swapping
or insertion neighboring structure; and (3) for the crossover oper-
ator, the compared algorithms utilize the single-point crossover
(SPC) operator. To verify the efficiency of the proposed heuristics,
we also compared the algorithm without the proposed heuristics.

Two types of instances are tested for evaluating the perfor-
mance of the proposed algorithm, which are given as follows.

(1) The extended versions of Carlier and Neron's benchmark
problems (Carlier and Neron et al., 2000). In this study, we
select and extend to instances with 10 jobs scale and in-
stances with 15 jobs, where we add the setup time and setup
energy consumption values for each instance to evaluate
both the makespan and the energy consumption objectives.
In this study, we rename the extended instances; for
example, “cj10c5a2” denotes the extension of instance
“j10c5a2”;

(2) The large-scale problem instances, which include twenty
instances, with problem scale ranging from 50 jobs to 200
jobs.
4.1. Setting parameters

Each instance can be characterized by the following parameters:
the number of tasks (n), the number of machines (m), and the
number of stages (s). After plenty of preliminary experiments, the
parameters for the proposed EA-MOA algorithm are set as follows:

C Deep-exploitation probability DEp: 0.5;
C Number of deep-exploitation iterations DEt: 20;
C Population size Psize: 100;
C Pareto archive set size: 2 � Psize;
C Number of iterations after which a solution is abandoned:

20;
C Maximum number of iterations (stopping condition): 500.
4.2. Comparison metrics

In order to compare the performances of different algorithms in
solving the multi-objective problems, we utilize the three perfor-
mance metrics that were discussed in (Pan et al., 2009; Li et al.,
2014a,b), i.e., the average Pareto distance Vpd, number of the non-
dominated solutions Vnp, and the ratio of the non-dominated so-
lutions Vrd. Let SP denote the reference solution set which is ob-
tained by running all the compared algorithms for 3000 iterations.
Let Sj (j¼ 1,2,3,4) represent the non-dominated solution set that is
obtained by algorithm j, where SP ¼ ∪Sj. Then, the detailed
computation processes of the three metrics are as follows.

(1) Average Pareto distance Vpd

Let Vpd ¼ 1
jSP j

P
y2SP

dyðSPÞ and

dyðSjÞ ¼ min
x2Sj

8<
:P2

i¼1

 
fiðxÞ�fiðyÞ

f max
i ð:Þ�f min

i ð:Þ

!2
9=
; ; y2SP , where fið:Þ represents

the ith objective value, and f max
i ð:Þ and f min

i ð:Þ are the minimum and
maximum, respectively, of the ith objective value in the Pareto
referent point set SP . dyðSjÞ represents the shortest normalized

distance from a reference solutions y in SP to the solution set Sj. Vpd

indicates the average of those shortest normalized distances from
all the reference points to the solution set Sj.

The average Pareto distance is usually used to evaluate the
spread and distribution of the obtained solution set. That is, a
smaller Vpd indicates that the obtained solution set has a better

distribution and better approximation to the reference set SP . The
most promising situation is that Vpd equals 0, which means that the
set of obtained solutions is equal to the reference point set.

(2) Number of non-dominated solutions Vnp

The number of non-dominated solutions is the number of ob-
tained solutions that are not dominated by the reference solutions.
A larger value of Vnp indicates that there are more non-dominated

solutions in the obtained solutions set Sj. The computational pro-
cess uses the following for-
mulation:Vnp ¼ fSj � fx2Sj

��dy2SP : y3xgg, where y3x means
that solution y dominates solution x.

(3) Ratio of non-dominated solutions Vrd

The metric Vrd is used to compute the ratio of non-dominated
solutions in the obtained solution set Sj. Obviously, a larger value
of Vrd represents a solution set with a higher probability for the
obtained solution to be a non-dominated solution. If Vrd is close to
one, almost all of the solutions in the obtained solution set are
equal to or near non-dominated solutions, whereas if Vrd is close to
zero, almost all of the obtained solutions are dominated by solu-
tions in the reference solution set. The computational process uses
the following formulation:

Vrd ¼ Vnp��Sj��

4.3. Efficiency of the proposed components

To verify the effectiveness of the proposed components in EA-
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(a) Comparison results for the right-shifting heuristic 

EA-MOA EA-MOA-ND
0

0.02

0.04

0.06

0.08

p-value=0.0056

av
er

ag
e

Pa
re

to
di

sta
nc

e

EA-MOA EA-MOA-ND
0

0.2

0.4

0.6

0.8

p-value=0.0162

av
er

ag
e

Pa
r e

to
r a

te

EA-MOA EA-MOA-ND

5

10

15

20

p-value=0.0141

av
er

ag
e

Pa
re

to
nu

m
be

r

(b) Comparison results for the deep-exploitation heuristic

EA-MOA EA-MOA-NE
0

0.02

0.04

0.06

0.08

p-value=0.0027

av
er

ag
e

Pa
re

to
di

sta
nc

e

EA-MOA EA-MOA-NE
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p-value=0.0301

av
er

ag
e

Pa
re

to
ra

te

EA-MOA EA-MOA-NE

5

10

15

20

p-value=0.0135

av
er
ag
e
P
ar
et
o
nu
m
be
r
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(d) Comparison results for the crossover heuristic
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(e) Comparison results for the local search heuristic

Fig. 7. Means and 95% LSD interval for pairs of compared algorithms.
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MOA, in this section, we conduct detailed comparisons of the al-
gorithms with and without the proposed heuristics. The algorithm
with all of the components is denoted as EA-MOA, the algorithm
without the right-shifting heuristic is named EA-MOA-NR, the al-
gorithmwithout the decoding heuristic is represented by EA-MOA-
NE, the algorithm without the proposed crossover operator is
denoted by EA-MOA-NC, the algorithm without the deep exploi-
tation procedure is called EA-MOA-ND, and the algorithm without
the local search methods is named EA-MOA-NL. It should be noted
that: (1) EA-MOA-NE uses the first-available-machine-first-service
method; and (2) EA-MOA-NC uses the single-point crossover
operator. The parameters of the five pairs of algorithms are the
same as those that were discussed in Section 4.1.

To check whether there exist significant differences between the
compared pairs of algorithms, we performed a multifactor analysis
of variance (ANOVA), where the five pairs of compared algorithms
are considered as factors. Fig. 7 illustrate the means and the 95%
LSD (Fisher's Least Significant Difference) interval for the best
values for the five pairs of compared algorithms of the average
Pareto distance, the average Pareto rate and the average Pareto
number. There are significant differences between the five pairs of
compared algorithms.
Table 1
Comparisons of 10-job instances.

Problem Pareto distance Vpd Pareto number Vnp

EA-MOA NSGA-II MOEA/D EA-MOA-WR EA-MOA NSGA-II

cj10c5a2 0.03 0.21 0.03 0.02 10 1
cj10c5a3 0.00 0.26 0.02 0.02 17 0
cj10c5a4 0.01 0.27 0.04 0.06 14 0
cj10c5a5 0.04 0.34 0.05 0.06 4 2
cj10c5a6 0.03 0.38 0.06 0.06 9 0
cj10c5b1 0.03 0.17 0.09 0.07 5 0
cj10c5b2 0.04 0.16 0.05 0.12 8 2
cj10c5b3 0.03 0.12 0.05 0.09 4 2
cj10c5b4 0.07 0.21 0.08 0.09 2 0
cj10c5b5 0.02 0.19 0.06 0.07 11 0
cj10c5b6 0.04 0.12 0.06 0.08 2 0
cj10c5c1 0.03 0.20 0.07 0.07 8 1
cj10c5c2 0.02 0.16 0.03 0.05 12 2
cj10c5c3 0.02 0.14 0.05 0.05 13 2
cj10c5c4 0.02 0.17 0.03 0.03 7 2
cj10c5c5 0.02 0.11 0.04 0.05 11 2
cj10c5c6 0.02 0.25 0.06 0.07 6 1
cj10c5d1 0.03 0.13 0.05 0.04 9 1
cj10c5d2 0.03 0.10 0.08 0.11 9 1
cj10c5d3 0.03 0.07 0.04 0.06 11 3
cj10c5d4 0.03 0.13 0.05 0.07 7 1
cj10c5d5 0.02 0.03 0.05 0.06 9 6
cj10c5d6 0.04 0.16 0.05 0.16 6 2
cj10c10a1 0.03 0.41 0.06 0.07 5 0
cj10c10a2 0.03 0.36 0.02 0.02 9 0
cj10c10a3 0.02 0.32 0.04 0.06 7 0
cj10c10a4 0.03 0.72 0.05 0.07 9 0
cj10c10a5 0.04 0.28 0.07 0.07 9 0
cj10c10a6 0.02 0.37 0.06 0.05 5 0
cj10c10b1 0.01 0.31 0.07 0.13 11 0
cj10c10b2 0.02 0.29 0.07 0.07 6 0
cj10c10b3 0.01 0.25 0.05 0.05 14 1
cj10c10b4 0.04 0.27 0.03 0.07 11 0
cj10c10b5 0.02 0.16 0.08 0.05 3 2
cj10c10b6 0.04 0.12 0.08 0.07 6 2
cj10c10c1 0.03 0.22 0.04 0.08 8 1
cj10c10c2 0.02 0.14 0.06 0.06 11 3
cj10c10c3 0.03 0.15 0.05 0.06 13 1
cj10c10c4 0.03 0.09 0.07 0.07 10 3
cj10c10c5 0.03 0.17 0.06 0.03 7 1
cj10c10c6 0.04 0.07 0.03 0.05 8 2
mean 0.03 0.21 0.05 0.07 8.44 1.15

- The best values are in bold.
4.4. Comparisons with NSGA-II and MOEA/D

In this section, to verify the efficiency of the proposed EA-MOA
algorithm, we performed detailed comparisons with the two ca-
nonical multi-objective algorithms, i.e., NSGA-II and MOEA/D. The
test instances are the extended versions of Carlier and Neron's
benchmark problems (Carlier and Neron et al., 2000).
4.4.1. Comparisons of the 10-jobs problems
The computational results for the 10-job problems are sum-

marized in Table 1, which gives the comparison results of the
average Pareto distance, the number of non-dominated solutions,
and the ratio of the non-dominated solutions for the 10-job
instance.

There are 13 columns in Table 1. The first column gives the tested
problem name. Then, the next four columns tell the computational
results on the average Pareto distance for the four compared al-
gorithms, i.e., the proposed algorithm EA-MOA, NSGA-II, MOEA/D
and EA-MOA-WR. The next four columns display the results on the
number of non-dominated solutions, and the ratios of the non-
dominated solutions are presented in the last four columns.

The following conclusions are drawn from the computational
Pareto rate Vrd

MOEA/D EA-MOA-WR EA-MOA NSGA-II MOEA/D EA-MOA-WR

5 9 0.38 0.13 0.20 0.50
6 5 0.77 0.00 0.23 0.33
6 1 0.58 0.00 0.26 0.05
0 0 0.17 0.25 0.00 0.00
2 0 0.45 0.00 0.10 0.00
0 0 0.33 0.00 0.00 0.00
3 2 0.44 0.13 0.18 0.11
1 0 0.31 0.20 0.06 0.00
1 1 0.10 0.00 0.06 0.08
0 0 0.50 0.00 0.00 0.00
1 1 0.10 0.00 0.07 0.06
0 1 0.44 0.09 0.00 0.05
9 4 0.43 0.29 0.38 0.20
4 1 0.57 0.18 0.22 0.06
5 7 0.26 0.25 0.18 0.30
3 1 0.48 0.20 0.12 0.05
0 1 0.27 0.07 0.00 0.06
2 4 0.32 0.13 0.13 0.29
1 0 0.39 0.11 0.04 0.00
4 2 0.38 0.33 0.18 0.12
2 0 0.29 0.08 0.14 0.00
3 3 0.35 0.67 0.14 0.13
3 1 0.33 0.20 0.30 0.05
4 1 0.24 0.00 0.31 0.05
8 5 0.47 0.00 0.42 0.45
3 1 0.44 0.00 0.19 0.06
1 4 0.64 0.00 0.06 0.21
0 1 0.35 0.00 0.00 0.08
2 2 0.31 0.00 0.12 0.14
0 1 0.73 0.00 0.00 0.06
0 1 0.30 0.00 0.00 0.05
3 3 0.67 0.17 0.16 0.17
6 3 0.58 0.00 0.33 0.14
1 2 0.21 0.18 0.04 0.22
0 0 0.30 0.20 0.00 0.00
7 0 0.42 0.13 0.35 0.00
1 1 0.39 0.38 0.04 0.08
2 3 0.52 0.09 0.09 0.15
2 2 0.45 0.30 0.09 0.12
3 4 0.33 0.11 0.18 0.33
7 2 0.35 0.25 0.33 0.15
2.71 1.95 0.40 0.12 0.14 0.12
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results for the average Pareto distance: (1) In solving the 41 10-job
problems, namely, “cj10c5a2” to “cj10c10c6”, the proposed EA-
MOA algorithm obtained 37 best values for the average Pareto
distance, which is better than the second best algorithm MOEA/D,
which obtained just three best values. In addition, the algorithm
EA-MOA-WR outperforms the NSGA-II algorithm. (2) According to
the last line in the table, on average, the proposed algorithm out-
performs the other compared algorithms. (3) Without the right-
shifting procedure, the algorithm EA-MOA-WR shows slightly
worse performance than EA-MOA, which verifies the efficiency and
effectiveness of the right-shifting function.

It can be concluded from the computational results for the
number of the non-dominated solutions that: (1) for solving the 41
10-job scale problems, the proposed EA-MOA algorithm obtained
41 best values for the number of Pareto solutions, which is obvi-
ously better than the other compared algorithms; (2) from the last
line in the table, we can see that on average, the proposed algo-
rithm performs the best, which is obviously better than the second
best algorithm MOEA/D; and (3) EA-MOA shows better perfor-
mance than EA-MOA-WR, which further verify the efficiency and
effectiveness of the right-shifting function.

The comparison results for the ratio of Pareto solutions in
Table 1 show that: (1) for solving the 41 10-job problems, namely,
“cj10c5a2” to “cj10c10c6”, the proposed EA-MOA algorithm ob-
tained 36 best values for the ratio of Pareto solutions, which is
better than the second best algorithm EA-MOA-WR, which ob-
tained just three best values; and (2) according to the last line in the
table, on average, the proposed algorithm outperforms the other
compared algorithms.
Table 2
Comparisons for the instances with 15 jobs.

Problem Pareto distance Vpd Pareto number Vnp

EA-MOA NSGA-II MOEA/D EA-MOA-WR EA-MOA NSGA-II

cj15c5a1 0.03 0.74 0.04 0.02 6 0
cj15c5a2 0.01 0.22 0.06 0.05 12 0
cj15c5a3 0.02 0.43 0.02 0.06 15 0
cj15c5a4 0.02 0.41 0.04 0.05 11 0
cj15c5a5 0.01 0.35 0.03 0.02 12 0
cj15c5a6 0.03 0.43 0.05 0.06 7 1
cj15c5b1 0.03 0.23 0.04 0.09 6 0
cj15c5b2 0.06 0.24 0.06 0.04 2 0
cj15c5b3 0.06 0.24 0.07 0.13 4 0
cj15c5b4 0.02 0.17 0.07 0.07 7 0
cj15c5b5 0.02 0.27 0.05 0.05 8 1
cj15c5b6 0.08 0.15 0.09 0.08 2 2
cj15c5c1 0.04 0.08 0.03 0.04 8 4
cj15c5c2 0.01 0.06 0.02 0.03 10 6
cj15c5c3 0.03 0.17 0.03 0.07 5 3
cj15c5c4 0.01 0.12 0.03 0.04 20 1
cj15c5c5 0.02 0.19 0.01 0.03 13 4
cj15c5c6 0.02 0.19 0.03 0.06 11 4
cj15c5d1 0.03 0.81 0.01 0.04 8 0
cj15c5d2 0.03 0.13 0.06 0.10 10 2
cj15c5d3 0.02 0.12 0.06 0.07 5 4
cj15c5d4 0.01 0.08 0.07 0.10 5 3
cj15c5d5 0.01 0.07 0.02 0.04 17 2
cj15c5d6 0.03 0.17 0.04 0.08 7 2
cj15c10a1 0.04 0.38 0.03 0.04 7 0
cj15c10a2 0.02 0.22 0.05 0.06 8 0
cj15c10a3 0.03 0.22 0.05 0.07 7 2
cj15c10a4 0.00 0.32 0.06 0.07 17 0
cj15c10a5 0.01 0.18 0.02 0.06 12 0
cj15c10a6 0.03 0.37 0.06 0.07 9 1
cj15c10b1 0.01 0.51 0.02 0.04 9 0
cj15c10b2 0.03 0.47 0.07 0.08 12 0
cj15c10b3 0.03 0.72 0.06 0.08 7 0
cj15c10b4 0.01 0.48 0.02 0.03 14 0
mean 0.03 0.29 0.04 0.06 9.21 1.24

- The best values are in bold.
4.4.2. Comparisons of the 15-jobs problems
The computational results for solving the 15-job problems are

summarized in Table 2. The following conclusions are obtained
from Table 2: (1) In comparisons of the average Pareto distance, for
solving the 41 10-job problems, namely, “cj10c5a2” to “cj10c10c6”,
the proposed EA-MOA algorithm obtained 35 best values for the
average Pareto distance, which is better than the second-best al-
gorithm MOEA/D, which obtained just three best values. In addi-
tion, the EA-MOA-WR algorithm outperforms the NSGA-II
algorithm. According to the last line in the table, on average, the
proposed algorithm performs better than the other compared al-
gorithms. (2) In comparisons of the number of Pareto solutions, for
solving the 41 10-job problems, the proposed EA-MOA algorithm
obtained all the best values for the number of Pareto solutions,
which is better than the other compared algorithms. According to
the last line in the table, on average, the proposed algorithm per-
forms the best. (3) In comparisons of the ratio of Pareto solutions,
for solving the 41 10-job problems, namely, “cj10c5a2” to
“cj10c10c6”, the proposed EA-MOA algorithm obtained 31 best
values for the ratio of Pareto solutions, which is better than the
second-best algorithmsMOEA/D and NSGA-II, which each obtained
just four best values. According to the last line in the table, on
average, the proposed algorithm outperforms the other compared
algorithms.

4.4.3. Comparisons analysis
According the comparison results for solving different scales of

instances, we can see that the proposed EA-MOA algorithm shows
better performance than the other compared algorithms. The main
Pareto rate Vrd

MOEA/D EA-MOA-WR EA-MOA NSGA-II MOEA/D EA-MOA-WR

3 4 0.353 0.000 0.136 0.364
5 0 0.632 0.000 0.357 0.000
4 3 0.714 0.000 0.211 0.167
2 4 0.786 0.000 0.111 0.250
2 6 0.667 0.000 0.087 0.353
4 1 0.467 0.250 0.222 0.071
3 1 0.333 0.000 0.231 0.083
2 5 0.100 0.000 0.182 0.417
2 0 0.211 0.000 0.143 0.000
4 5 0.583 0.000 0.200 0.250
5 3 0.421 0.083 0.250 0.188
2 1 0.095 0.143 0.222 0.100
7 4 0.364 0.571 0.269 0.235
10 9 0.476 0.667 0.385 0.333
4 2 0.217 0.231 0.250 0.091
6 3 0.741 0.091 0.231 0.115
12 2 0.542 0.308 0.480 0.080
7 2 0.500 0.400 0.304 0.087
7 4 0.800 0.000 0.583 0.222
6 1 0.385 0.250 0.333 0.043
1 0 0.217 0.364 0.037 0.000
3 1 0.208 0.273 0.150 0.050
9 4 0.586 0.222 0.391 0.190
3 2 0.368 0.182 0.103 0.095
7 3 0.438 0.000 0.304 0.167
5 0 0.364 0.000 0.192 0.000
5 4 0.438 0.167 0.250 0.250
2 1 0.810 0.000 0.118 0.091
12 2 0.462 0.000 0.480 0.118
4 1 0.450 0.077 0.211 0.056
8 4 0.474 0.000 0.296 0.154
0 1 0.667 0.000 0.000 0.063
6 5 0.333 0.000 0.353 0.263
9 6 0.778 0.000 0.500 0.300
5.03 2.76 0.470 0.126 0.252 0.154
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Fig. 8. Pareto front results.
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Fig. 9. Gantt charts for “cj10c5a2”.
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reasons are as follows: (1) the proposed hybrid decoding methods
that are embedded in the algorithm balance the diversity and the
performance of the solutions; (2) the proposed right-shifting pro-
cedure further enhances the solution quality; and (3) the proposed
exploration and exploitation procedures strengthen the balance of
the global and local search abilities.

Fig. 8 (a)e(c) show the Pareto front charts for solving the last
three 15-job instances, i.e., “cj15c10b2” to “cj15c10b4”. According
to the three figures, the proposed algorithm obtains solutions that
are close to the Pareto front and well-distributed.

Fig. 9 (a) and (b) report the Gantt charts for two of the obtained
non-dominated solutions, which show the effectiveness of the
proposed EA-MOA algorithm.

4.5. Comparisons on large-scale instances

To further verify the performance of the proposed algorithm in
solving large-scale problems, we randomly generate four types of
large-scale instances, namely, 50-job, 100-job, 150-job, and 200-job
instances. We also coded two recently published efficient algo-
rithms, i.e., DBEA (Asafuddoula et al., 2015) and EADD (Li et al.,
2015a,b), to make detailed comparisons with the proposed algo-
rithms. The three compared algorithms are tested on the same
problem instances and in the same computing environment with
the same stopping criterion. The detailed comparison results after
30 independent runs are given in Table 3.

Table 3 gives the results for the 20 large-scale problems ob-
tained by each compared algorithm. The first column gives the
problem name, and the second column lists the problem scale in
terms of the total number of jobs. Then, the results that were ob-
tained by the proposed EA-MOA, EADD, and DBEA are reported in
the following columns. From the comparison results, we observe
the following: (1) In comparisons of the average Pareto distance,
the proposed EA-MOA algorithm obtained 15 optimal values out of
the given twenty large-scale instances, which is significantly better
than the other two compared algorithms. The second best algo-
rithm, namely DBEA, only obtained three optimal values. According
to the last row, on average, the proposed EA-MOA algorithm ob-
tained an average value of 0.035, which is better than those of the
other compared algorithms. (2) In comparisons of the number of
Pareto solutions, the proposed EA-MOA algorithm obtained 15
better values out of the given twenty large-scale instances, which is
significantly better than the other two compared algorithms. The
second-best algorithm, namely EADD, only obtained four optimal
values. According to the last row in the table, on average, the pro-
posed EA-MOA algorithm obtained an average value of 7.65, which



Table 3
Comparisons for the 20 large-scale problems.

Problem Pareto distance Vpd Pareto number Vnp Pareto rate Vrd

EA-MOA NSGA-II MOEA/D EA-MOA NSGA-II MOEA/D EA-MOA NSGA-II MOEA/D

cj50-1 0.012 0.182 0.226 8 0 0 0.667 0.000 0.000
cj50-2 0.000 0.264 0.311 6 0 0 0.667 0.000 0.000
cj50-3 0.000 0.119 0.130 11 0 0 0.688 0.000 0.000
cj50-4 0.000 0.066 0.033 8 1 1 0.667 0.125 0.200
cj50-5 0.000 0.042 0.049 9 0 0 0.643 0.000 0.000
cj100-1 0.000 0.191 0.179 12 0 0 0.600 0.000 0.000
cj100-2 0.013 2.052 2.275 11 0 0 0.579 0.000 0.000
cj100-3 0.490 0.493 0.516 0 1 0 0.000 0.250 0.000
cj100-4 0.076 0.001 0.072 3 2 3 0.250 0.333 0.333
cj100-5 0.092 0.249 0.065 1 1 0 0.111 0.125 0.000
cj150-1 0.000 0.004 0.020 13 3 4 0.406 0.214 0.444
cj150-2 0.001 0.009 0.298 10 4 0 0.500 0.190 0.000
cj150-3 0.000 0.027 0.037 5 6 0 0.500 0.500 0.000
cj150-4 0.000 0.006 0.018 14 10 1 0.824 0.500 0.143
cj150-5 0.014 0.006 0.027 2 3 0 0.125 0.300 0.000
cj200-1 0.000 0.001 0.000 18 0 3 0.529 0.000 0.429
cj200-2 0.002 0.002 0.000 5 8 7 0.238 0.286 0.500
cj200-3 0.006 0.028 0.008 5 3 5 0.417 0.200 0.600
cj200-4 0.000 0.163 0.308 6 0 0 0.750 0.000 0.000
cj200-5 0.001 0.071 0.000 6 0 9 0.500 0.000 0.529
mean 0.035 0.199 0.229 7.65 2.1 1.7 0.483 0.151 0.159

- The best values are in bold.
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Fig. 10. Means and 95% LSD interval for EA-MOA, EADD, and DBEA.
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is better than the values that were obtained by the other compared
algorithms. (3) In comparisons of the ratio of Pareto solutions, the
proposed EA-MOA algorithm obtained 14 better values out of the
given twenty large-scale instances, which is significantly better
than the other two compared algorithms. The second-best algo-
rithm, namely DBEA, only obtained six optimal values. The pro-
posed EA-MOA algorithm obtained an average value of 0.483,
which is better than the values that were obtained by the other
compared algorithms.

To check whether the observed differences from the above table
are significant, we also performed a multifactor analysis of variance
(ANOVA), where the three compared algorithms are considered
factors. Fig. 10 (a) and (b) illustrate the means and the 95% LSD
(Fisher's Least Significant Difference) intervals for the best values of
the three compared algorithms for the average Pareto number and
the average Pareto rate, respectively. There is a statistically signif-
icant difference between the three compared algorithms.
EA-MOA performs better in solving the instances with 50, 100,
and 150 jobs. However, for solving the problem with 200 jobs, the
proposed algorithm only slightly outperforms the other two algo-
rithms. The main reason may be that, in solving the 200-job
instance, the proposed algorithm takes more time because it con-
siders the right-shift heuristic.
5. Conclusions

In this study, a hybrid energy-aware multi-objective optimiza-
tion algorithm is proposed for solving the HFS problem with the
objective of minimizing the energy consumption and themakespan
simultaneously. The main contributions of the proposed algorithm
are as follows: (1) a well-designed encoding and decoding mech-
anism that is tailored to the features of the problem is proposed; (2)
eight types of neighborhood structures and an adaptive neighbor-
hood structure selection mechanism are designed to enhance both
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the exploitation and exploration capabilities; (3) a right-shifting
approach is designed to improve the energy consumption objec-
tive of the given solution; and (4) to balance the global and local
search abilities, a hybrid deep-exploitation and deep-exploration
method is designed.

The proposed algorithm is tested on problems with different
scales. Several efficient algorithms are comparedwith the proposed
algorithm. Experimental results show the robustness and efficiency
of the proposed EA-MOA algorithm. Future work will include the
introduction of a local optimization method or other efficient
heuristics to improve the search capabilities of the proposed al-
gorithm, and the application of the proposed algorithm to other
problems, such as multi-objective HFS problems under dynamic
environments and the multi-objective flexible flow shop sched-
uling problems.

Acknowledgements

This research is partially supported by National Science Foun-
dation of China under Grant 61773192, 61773246, 61603169 and
61503170, Shandong Province Higher Educational Science and
Technology Program (J17KZ005), Key Laboratory of Computer
Network and Information Integration (Southeast University), Min-
istry of Education (K93-9-2017-02), and State Key Laboratory of
Synthetical Automation for Process Industries (PAL-N201602).

References

Asafuddoula, M., Ray, T., Sarker, R., 2015. A decomposition-based evolutionary al-
gorithm for many objective optimization. IEEE Trans. Evol. Comput. 19 (3),
445e460.

Bo _zejko, W., Pempera, J.A., Smutnicki, C.A., 2013. Parallel tabu search algorithm for
the hybrid flow shop problem. Comput. Ind. Eng. 65 (3), 466e474.

Carlier, J., N�eron, E., 2000. An exact method for solving the multi-processor flow-
shop. Rairo-Oper. Res. 34 (1), 1e25.

Chang, S.C., Liao, D.Y., 1994. Scheduling flexible flow shops with no setup effects.
IEEE Trans. Robot. Autom. 10 (2), 112e122.

Che, A., Zeng, Y., Lyu, K., 2016. An efficient greedy insertion heuristic for energy-
conscious single machine scheduling problem under time-of-use electricity
tariffs. J. Clean. Prod. 129, 565e577.

Chou, F.D., 2013. Particle swarm optimization with cocktail decoding method for
hybrid flow shop scheduling problems with multiprocessor tasks. Int. J. Prod.
Econ. 141 (1), 137e145.

Chung, T.P., Liao, C.J., 2013. An immunoglobulin-based artificial immune system for
solving the hybrid flow shop problem. Appl. Soft Comput. 13 (8), 3729e3736.

Dai, M., Tang, D., Giret, A., Salido, M.A., Li, W.D., 2013. Energy-efficient scheduling
for a flexible flow shop using an improved genetic-simulated annealing algo-
rithm. Robot. Cim-Int. Manuf 29, 418e429.

Deb, K., Jain, H., 2014. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part I: solving
problems with box constraints. IEEE Trans. Evol. Comput. 18 (4), 577e601.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M., 2002. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2), 182e197.

Ding, J.Y., Song, S., Wu, C., 2016a. Carbon-efficient scheduling of flow shops by
multi-objective optimization. Eur. J. Oper. Res. 248, 758e771.

Ding, J.Y., Song, S., Zhang, R., Wu, C., 2016b. Parallel machine scheduling under time-
of-use electricity prices: new models and optimization approaches. IEEE Trans.
Autom. Sci. Eng. 13, 1138e1154.

Engin, O., Ceran, G., Yilmaz, M.K., 2011. An efficient genetic algorithm for hybrid
flow shop scheduling with multiprocessor task problems. Appl. Soft Comput. 11
(3), 3056e3065.

Fu, J., Faust, J., Chachuat, B., Mitsos, A., 2015. Local optimization of dynamic pro-
grams with guaranteed satisfaction of path constraints. Automatica 62,
184e192.

Gahm, C., Denz, F., Dirr, M., Tuma, A., 2016. Energy-efficient scheduling in
manufacturing companies: a review and research framework. Eur. J. Oper. Res.
248 (3), 744e757.

Gupta, J.N.D., 1988. Two-stage, hybrid flow shop scheduling problem. J. Oper. Res.
Soc. 39, 359e364.

Huang, R.H., Yang, C.L., Hsu, C.T., 2015. Multi-objective two-stage multiprocessor
flow shop schedulingea subgroup particle swarm optimisation approach. Int. J.
Syst. Sci. 46 (16), 3010e3018.

Jiang, S., Liu, M., Hao, J., Qian, W., 2015. A bi-layer optimization approach for a
hybrid flow shop scheduling problem involving controllable processing times in
the steelmaking industry. Comput. Ind. Eng. 87, 518e531.

Lei, D., Guo, X., 2016. Hybrid flow shop scheduling with not-all-machines options
via local search with controlled deterioration. Comput. Oper. Res. 65, 76e82.
Li, J., Pan, Q., 2015. Solving the large-scale hybrid flow shop scheduling problem

with limited buffers by a hybrid artificial bee colony algorithm. Inf. Sci. 316,
487e502.

Li, J., Pan, Q., Wang, F., 2014a. A hybrid variable neighborhood search for solving the
hybrid flow shop scheduling problem. Appl. Soft Comput. 24, 63e77.

Li, J.Q., Pan, Q.K., Tasgetiren, M.F., 2014b. A discrete artificial bee colony algorithm
for the multi-objective flexible job-shop scheduling problemwith maintenance
activities. Appl. Math. Model. 38 (3), 1111e1132.

Li, D., Meng, X., Liang, Q., Zhao, J., 2015a. A heuristic-search genetic algorithm for
multi-stage hybrid flow shop scheduling with single processing machines and
batch processing machines. J. Intell. Manuf. 26 (5), 873e890.

Li, K., Deb, K., Zhang, Q., Kwong, S., 2015b. An evolutionary many-objective opti-
mization algorithm based on dominance and decomposition. IEEE Trans. Evol.
Comput. 19 (5), 694e716.

Li, J., Pan, Q., Duan, P., 2016a. An improved artificial bee colony algorithm for solving
hybrid flexible flowshop with dynamic operation skipping. IEEE. T. Cyber. 46
(6), 1311e1324.

Li, J.Q., Pan, Q.K., Mao, K.A., 2016b. Hybrid fruit fly optimization algorithm for the
realistic hybrid flowshop rescheduling problem in steelmaking systems. IEEE
Trans. Autom. Sci. Eng. 13 (2), 932e949.

Liao, C.J., Tjandradjaja, E., Chung, T.P., 2012. An approach using particle swarm
optimization and bottleneck heuristic to solve hybrid flow shop scheduling
problem. Appl. Soft Comput. 12 (6), 1755e1764.

Lin, H.T., Liao, C.J., 2003. A case study in a two-stage hybrid flow shop with setup
time and dedicated machines. Int. J. Prod. Econ. 86 (2), 133e143.

Lu, C., Gao, L., Li, X., Pan, Q., Wang, Q., 2017. Energy-efficient permutation flow shop
scheduling problem using a hybrid multi-objective backtracking search algo-
rithm. J. Clean. Prod. 144, 228e238.

Luo, H., Du, B., Huang, G.Q., Chen, H., Li, X., 2013. Hybrid flow shop scheduling
considering machine electricity consumption cost. Int. J. Prod. Econ. 146,
423e439.

Marichelvam, M.K., Prabaharan, T., Yang, X.S., Geetha, M., 2013. Solving hybrid flow
shop scheduling problems using bat algorithm. Int. J. Logist. Econ. Glob. 5 (1),
15e29.

Marichelvam, M.K., Prabaharan, T., Yang, X.S., 2014a. A discrete firefly algorithm for
the multi-objective hybrid flowshop scheduling problems. IEEE Trans. Evol.
Comput. 18 (2), 301e305.

Marichelvam, M.K., Prabaharan, T., Yang, X.S., 2014b. Improved cuckoo search al-
gorithm for hybrid flow shop scheduling problems to minimize makespan.
Appl. Soft Comput. 19, 93e101.

Moradinasab, N., Shafaei, R., Rabiee, M., Ramezani, P., 2013. No-wait two stage
hybrid flow shop scheduling with genetic and adaptive imperialist competitive
algorithms. J. Exp. Theor. Artif. Intell. 25 (2), 207e225.

Nawaz, M., Enscore, E.E., Ham, I., 1983. A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega 11 (1), 91e95.
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