
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016 1311

An Improved Artificial Bee Colony Algorithm for
Solving Hybrid Flexible Flowshop With

Dynamic Operation Skipping
Jun-qing Li, Member, IEEE, Quan-ke Pan, and Pei-yong Duan

Abstract—In this paper, we propose an improved discrete
artificial bee colony (DABC) algorithm to solve the hybrid
flexible flowshop scheduling problem with dynamic operation
skipping features in molten iron systems. First, each solution is
represented by a two-vector-based solution representation, and
a dynamic encoding mechanism is developed. Second, a flexi-
ble decoding strategy is designed. Next, a right-shift strategy
considering the problem characteristics is developed, which can
clearly improve the solution quality. In addition, several skipping
and scheduling neighborhood structures are presented to balance
the exploration and exploitation ability. Finally, an enhanced
local search is embedded in the proposed algorithm to fur-
ther improve the exploitation ability. The proposed algorithm
is tested on sets of the instances that are generated based on
the realistic production. Through comprehensive computational
comparisons and statistical analysis, the highly effective perfor-
mance of the proposed DABC algorithm is favorably compared
against several presented algorithms, both in solution quality and
efficiency.

Index Terms—Artificial bee colony (ABC) algorithm, dynamic
operation skipping, heuristic, hybrid flexible flowshop (HFF).

I. INTRODUCTION

IN MODERN iron and steel production systems, the
scheduling of molten iron plays an important role and

can clearly increase the production efficiency and profit.
The classical process of molten iron scheduling can be

Manuscript received December 24, 2014; revised April 17, 2015; accepted
June 4, 2015. Date of publication June 26, 2015; date of current version
May 13, 2016. This work was supported in part by the National Natural
Science Foundation of China under Grant 61104179, Grant 61374187, and
Grant 61174187, in part by the Basic Scientific Research Foundation of
Northeastern University under Grant N110208001 and N130508001, in part
by the Key Laboratory Basic Research Foundation of Education Department
of Liaoning Province under Grant LZ2014014, in part by the Program for
New Century Excellent Talents in University (NCET-13-0106), in part by the
Specialized Research Fund for the Doctoral Program of Higher Education
(20130042110035), in part by the Science Foundation of Liaoning Province
in China (2013020016), and in part by the IAPI Fundamental Research Funds
(2013ZCX02). This paper was recommended by Associate Editor K.-C. Tan.
(Corresponding author: Quan-ke Pan.)

J.-Q Li is with the State Key Laboratory of Synthetical Automation for
Process Industries, Northeastern University, Shenyang 110819, China, and
also with the School of Computer Science, Liaocheng University, Liaocheng
252059, China (e-mail: lijunqing.cn@gmail.com).

Q.-K. Pan is with the State Key Laboratory of Digital Manufacturing
Equipment and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China (e-mail: panquanke_lcu@163.com).

P-Y. Duan is with the School of Computer Science, Liaocheng University,
Liaocheng 252059, China (e-mail: duanpeiyong@lcu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2444383

divided into five stages: 1) blast furnace; 2) preprocessing;
3) dephosphorization or desulphurization; 4) post-processing;
and 5) iron pouring stages [1], [2]. In the first stage, the
molten iron is first hybridized and processed in blast fur-
naces and then poured into pots carried on torpedo cars.
Then, these torpedo cars are hauled by engines on a rail
track to one of the two steel-making sites, where the molten
iron will be processed through preprocessing, dephosphoriza-
tion or desulphurization, post-processing, and iron pouring
stages.

In Shanghai Baoshan Iron and Steel Complex (Baosteel),
there are generally two types of molten iron, i.e., the common
and specific molten irons. The specific molten iron can be
further divided into three types: 1) demanganization molten
iron; 2) silicon iron; and 3) pretreatment (desiliconization,
dephosphorization, and desulphurization) molten iron. For the
processing capacity limitation of the pre- and post-processing
devices, the specific molten iron must be processed through
the two stages, while the common molten iron should skip one
or two of the two stages according to the capacity constraints
or the due date window. In other words, the common molten
iron will be dynamically selected to skip certain stages. The
dynamic operation skipping is the main characteristic of the
molten iron scheduling problem in Baosteel, and it can also
be extended to other scheduling applications.

The hybrid flow shop (HFS) is one branch of the classical
flow shop scheduling problem, which has been verified to be
an NP-hard problem [3]–[20]. Many real-world manufacturing
systems can be modeled as an HFS problem with certain con-
straints, such as the steel-making casting problems [14]. The
hybrid flexible flowshop (HFF) is an extension of the classi-
cal HFS, which is more complex than the latter because of
the addition need to permitting operation skipping [21]–[32].
Several meta-heuristics have been applied to solve the HFF
problems, such as particle swarm optimization (PSO) [21]
and genetic algorithm (GA) [31]. The molten iron schedul-
ing problem can be viewed as an HFF problem with dynamic
missing operations as follows: there are n torpedo pots (jobs)
and k stages. At each stage, there are m parallel machines.
All the jobs can either flow through each stage or skip certain
stages. When any job arrives at any stage, it should select one,
and only one, machine to be processed on. The goal is to find
a nonpreemptive schedule that minimizes the average sojourn
time, the penalties of tardiness and earliness, and the penalty
of the skipping rate.

2168-2267 c© 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1312 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016

Real-world manufacturing systems often involve uncer-
tainty and dynamic changes, especially in make-to-order shop
environments [33]. However, there is very limited available
literature on HFF with dynamic changes, such as dynamic
job-skip-stage, which we call HFF-D, let alone compara-
tive studies. In real-world manufacturing systems, there are
many applications that can be modeled as an HFF-D prob-
lem, such as the molten iron scheduling problems. Therefore,
it is urgent to address this type of scheduling problem.
The artificial bee colony (ABC) algorithm is proposed by
Karaboga to optimize multivariable and multimodal contin-
uous functions. Since 2005, ABC has been applied to solve
many optimization problems. Experimental results compared
with those of other algorithms verified the efficiency of the
ABC algorithm [14], [34]–[43]. To the best of our knowl-
edge, there is no literature aimed at solving the iron scheduling
problem by using ABC. Therefore, in this paper, we propose
an improved discrete ABC (DABC) to solve the molten iron
scheduling problem in iron and steel industries.

In this paper, we develop a novel DABC algorithm to solve
the HFF scheduling problem with dynamic stage-skipping
for jobs. The main contributions of this paper are as fol-
lows: 1) HFF with dynamic job skipping, which is applicable
in many industrial applications, is first proposed and mod-
eled; 2) considering the problem characteristics, a dynamic
encoding, and flexible decoding mechanism is developed;
3) a right-shift decoding method is proposed to minimize
the earliness and tardiness penalties; 4) several skipping and
scheduling neighborhood structures are presented to balance
the exploration and exploitation abilities; and 5) an enhanced
local search is embedded in the proposed algorithm to further
improve the exploitation ability.

The rest of this paper is organized as follows. Section II
briefly describes the molten iron scheduling problem. Next,
the framework of the proposed algorithm is presented in
Section III. Then, Section IV illustrates the experimental
results and compares them to those of the presented algorithms
from the literature to demonstrate the superiority of the pro-
posed algorithm. Finally, the conclusion is given in Section V.

II. PROBLEM DESCRIPTIONS

A. Molten Iron Process

In this paper, we consider the molten iron scheduling
problem in Baosteel, which is illustrated in Fig. 1.

Baosteel is equipped with four blast furnaces for iron-
making, two steel-making sites for pretreatment, and two
iron-pouring sites. Each blast furnace has four tapping holes,
and three of them are used to pouring molten iron, while
the other is used for maintenance. Each blast furnace per-
forms roughly 12–14 pouring and provides three or four
torpedo pots for each pouring. Each torpedo pot can transport
approximately 270 tons of molten iron. Therefore, Baosteel
produces approximately 150 torpedo pots every day. In the
first steel-making site, there is one preprocessing device and
two desulfurization devices. The second steel-making site has
one preprocessing device, three desulfurization or dephospho-
rization devices, and two post-processing devices. The first

Fig. 1. Layout of the molten iron transportation track.

steel-making site has one iron pouring site, while the second
steel-making site has four iron pouring sites to receive the
molten iron from the torpedo pots. Generally, Baosteel dis-
patches molten iron as follows: molten iron drained from blast
furnaces #1 and #2 is assigned to the first steel-making site,
while molten iron from blast furnaces #3 and #4 is assigned to
the second steel-making site. If blast furnaces #1 and #2 cannot
supply enough molten iron to the first steel-making site, blast
furnaces #3 and #4 also provide enough molten iron to the
first steel-making site. Meanwhile, if blast furnaces #3 and #4
cannot supply enough molten iron to the second steel-making
site, blast furnaces #1 and #2 also provide enough molten iron
to the second steel-making site.

The characteristics of the molten iron process can be
summarized as follows.

1) There are five stages in the molten iron scheduling
problem, i.e., the blast furnace, preprocessing, dephos-
phorization or desulphurization, post-processing, and
iron pouring stages.

2) In each stage, there are several identical parallel
machines, which can be selected by any torpedo (job)
flowed through the stage.

3) All torpedoes or jobs follow the same processing
sequence, that is, from the first stage to the last stage;
some torpedoes or jobs may skip some stages according
to the processing capacity of the parallel machines in
certain stages or the due date window.

4) The processing times of all torpedoes at all stages
and the transportation times are non-negative, known,
deterministic, and uninterrupted.

5) Each torpedo can be processed at most on one machine
at a time, and each machine can process at most one
torpedo at a time.

6) Setup times for torpedoes at each stage are relatively
short, and therefore, can be ignored.

7) Transfer times between stages are considered.
8) Preemption is not permitted, that is, any torpedo should

remain on the assigned machine until it completes its
work.

LI et al.: IMPROVED ABC ALGORITHM FOR SOLVING HFF WITH DYNAMIC OPERATION SKIPPING 1313

B. Molten Iron Scheduling Problem

To make the problem closer to the industrial reality, we
consider minimization of the weighted sum of four penalty
values, i.e., the average sojourn time, the total earliness, the
total tardiness, and the skipping rate of the critical machines.
The sojourn time of a job is the duration between the com-
pletion time in the first stage and the starting time in the last
stage. Minimizing sojourn times leads to minimization of wait-
ing times, and thus, energy consumption can be reduced [14].
The skipping rate penalty is to compute the sum of the
skipping rate of the devices in the pre- and post-processing
stages.

Due to its complexity, we consider the molten iron schedul-
ing problem as an HFF-D problem in a static environ-
ment. The notations used in this paper are summarized as
follows.

i Index of the jobs, i = 1, 2, . . . , n.
k Index of the machines, k = 1, 2, . . . , m.
j Index of the stages, j = 1, 2, . . . , 5.
n Total number of jobs.
m Total number of machines.
pi,j Processing time of job i at stage j.
Ej Set of parallel machines at stage j.
mj Number of parallel machines at stage j.
J Set of n jobs, J = {J1, J2, . . . , Jn}.
Th,j Transfer time from stage h to stage j.
[di

s, di
e] Due time window of job i.

w1 Penalty coefficient for the average sojourn time.
w2 Penalty coefficient for the earliness.
w3 Penalty coefficient for the tardiness.
w4 Penalty coefficient for the skipping rate.
bi,j Starting time of job i at stage j.
ei,j Completion time of job i at stage j.
�i Set of stages to be accessed by job i.
xi,j,k If job i is processed on machine k at stage j,

xi,j,k = 1; otherwise xi,j,k = 0.
zi,h,j If job i is to be processed at stage j immediately

after its completion at stage h, zi,h,j = 1; otherwise
zi,h,j = 0.

yi,l,j If job i is preceding job l to be processed at stage j,
yi,l,j = 1; if jobs l and i start at the same time at
stage j, yi,l,j = 1/2; otherwise yi,l,j = 0.

By using the above notations, we give the formulation of
this paper as follows:

min f = w1F1 + w2F2 + w3F3 + w4F4

F1 =
n∑

i=1

(
bi,5 − ei,1

)/
n (1)

F2 =
n∑

i=1

max
(
0, di

s − bi,5
)

(2)

F3 =
n∑

i=1

max
(
0, bi,5 − di

e

)
(3)

F4 =
⎛

⎝1 −
⎛

⎝
∑

j=2,4

mj∑

k=1

n∑

i=1

xi,j,k

⎞

⎠
/

2n

⎞

⎠ × 100 (4)

∑

j∈�i
k∈Ej

xi,j,k = 1, ∀i ∈ J (5)

bi,j − (
bi,h + pi,h + Th,j

) · zi,h,j ≥ 0, ∀i ∈ J, h, j ∈ �i (6)

yi,l,j + yl,i,j = 1, ∀i, l ∈ J, j ∈ (�i ∩ �l) (7)

bl,j − (
bi,j + pi,j

) + U · (
3 − yi,l,j − xi,j,k − xl,j,k

) ≥ 0,

∀i, l ∈ J, k ∈ Ej, j ∈ (�i ∩ �l) (8)

xi,j,k ∈ {0, 1}, ∀i ∈ J, j ∈ {1, 2, 3, 4, 5}, k ∈ Ej (9)

zi,h,j ∈ {0, 1}, ∀i ∈ J, h, j ∈ {1, 2, 3, 4, 5} (10)

yi,l,j ∈
{

0,
1

2
, 1

}
, ∀i, l ∈ J, j ∈ {1, 2, 3, 4, 5}. (11)

The four functions (1)–(4) are to minimize the penalty
caused by the average sojourn time, the total earliness, the
total tardiness, and the skipping rate penalty. Constraints (5)
make sure that each operation can select one and only one
available machine in each stage which it must go through.
Constraints (6) guarantee that for two consecutive operations
of each job, the next one can be started only after the com-
pletion of the preceding one plus the transfer time between
the two stages. Constraints (7) and (8) make sure that pro-
cessing overlap of jobs on the same machine is not permitted.
Constraints (9)–(11) define the value ranges for the decision
variables.

C. Example Problem Instance

The following example will help in illustrating this complex
HFF-D problem. Consider an instance with five torpedoes and
stages. There are two blast furnaces in the first stage, two
preslag-pouring devices in the second stage, two dephospho-
rization or desulphurization devices in the third stage, two
post-slag-pouring devices in the fourth stage, and two pouring
devices in the last stage. In the five torpedoes, the second and
third torpedoes are of the special molten irons, while the others
are of the common molten iron. That is, n = 5, m = 10, E1 =
{1, 2}, E2 = {1, 2}, E3 = {1, 2}, E4 = {1, 2}, E5 = {1, 2}. Let
w1 = 1, w2 = 1, w3 = 0.5, and w4 = 1. The set of special
iron = {2, 3} and the set of common iron = {1, 4, 5}. The
processing times pij, the transfer times Tij, and the due date
window are given as follows:

[
pij

]
5×5 =

⎡

⎢⎢⎢⎢⎣

30
30
30
30
30

30
30
30
30
30

30
30
30
30
30

40
40
30
40
30

30
30
30
30
30

⎤

⎥⎥⎥⎥⎦

[
Tij

]
5×5 =

⎡

⎢⎢⎢⎢⎣

0
10
20
30
40

0
0

15
30
45

0
0
0

10
20

0
0
0
0

10

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦

[
di

s
di

e

]

5×5
=

[
150
170

180
200

200
220

200
220

220
230

]
.

The Gantt chart of a solution for the above problem instance
is shown in Fig. 2, where each operation is represented by
a rectangle labeled with the job number. For example, in the

1314 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016

Fig. 2. Example Gantt chart.

first stage, job J1 is processed on the first machine, and all
the five jobs should be processed in the first stage. The two
jobs J1 and J5 skip the second stage, while J4 skips the fourth
stage. The average sojourn time F1 is 11.8. The starting times
for jobs 1–5 at the last stage are 160, 190, 220, 240, and 210,
respectively. So, jobs 1–3 are all on due date. The total ear-
liness value F2 is 10, and the total tardiness value F3 is 20.
The total number of operations being processed at stages 2
and 4 is 7. Then, F4 is (1 − 7/10)× 100 = 30. Therefore, the
objective value is 11.8×1+10×1+20×0.5+30×1 = 61.8.

III. PROPOSED ALGORITHM

In this section, we first introduce the problem-specific
heuristics, which include the dynamic encoding mechanism,
the flexible decoding strategy, and the right-shift heuristic.
Then, we present the neighborhood structures, the population
initialization method, and the strategies for the three types of
artificial bees.

A. Dynamic Encoding Mechanism

To solve the HFS scheduling problem, the
permutation-based encoding mechanism is commonly
used [4], [5], [7], [11]–[17]. In the permutation-based repre-
sentation, each solution is represented by a string of integers.
Each integer corresponds to a job, and the sequence represents
the processing order at the first stage.

In the proposed algorithm, each individual is represented by
two vectors. The first vector is named the scheduling vector,
and the second vector is named the skipping vector, which
contains the information of the operation skipping. To con-
sider the exploitation and exploration abilities, we propose
a dynamic encoding mechanism for the scheduling vector.
First, we divide the entire evolution evenly into two phases.
During the first part of evolution, we apply the permutation-
based encoding method for the scheduling vector, which is
represented in Fig. 3(a). For the second part of evolution,
we develop a novel detailed representation, which is given in
Fig. 3(b). In this detailed representation, each scheduling vec-
tor is represented by five sub-vectors, in which each sub-vector
contains n elements. Therefore, the length of the scheduling
vector is equal to 5n. It should be noted that, at the first stage,

Fig. 3. Encoding representation. Scheduling vector for the (a) first and
(b) second part of evolution. (c) Skipping vector.

each job and machine is available at time zero; therefore, all
the jobs are scheduled according to their occurrence in the
scheduling vector at the first stage. At the following stage,
each job will be scheduled according to their completion time
at the previous stage. However, for the situation in which sev-
eral jobs with different available times are waiting for the same
machine, we should schedule each waiting job according to its
sequence in the scheduling vector at the corresponding stage.

In the proposed dynamic encoding mechanism, the element
in the sub-vector in Fig. 3(b) has different meanings for dif-
ferent stages. At the first stage, each element represents the
corresponding job, and the sequence of these elements corre-
sponds to the scheduling order. For example, in Fig. 3(b), at
the first stage, the first element is 2, which represents job J2,
and the last one is for J5. All jobs are scheduled according
to their sequence in the first sub-vector, i.e., the processing
sequence at the first stage is J2, J4, J1, J3, and J5. At the
following stages, the element in the sub-vector gives the pro-
cessing priority for the corresponding job Ji when several jobs
are waiting for the same machine. For example, given that
three jobs J1, J2, and J5 are ready and waiting for M2 at the
second stage, we can see from the sub-vector that the process-
ing sequence is J2, J1, and J5. That is, J2 is the first job to be
processed after M2 is available, because in the sub-vector at
the second stage, the elements that correspond to J2, J1, and
J5 are 1, 3, and 5, respectively.

The skipping vector tells the skipping status of each opera-
tion. Therefore, the length of the skipping vector is equal to n.
In the skipping vector, there are four types of status: 1) “0”
represents skipping the two stages, that is, the corresponding
job should skip the pre- and post-processing stages; 2) “1”
means that the corresponding job will only skip the prepro-
cessing stage and be processed in the post-processing stage;
3) “2” means that the job will be processed in the preprocess-
ing stage while skipping the post-processing stage; and 4) “3”
indicates that the job will not skip any stage.

LI et al.: IMPROVED ABC ALGORITHM FOR SOLVING HFF WITH DYNAMIC OPERATION SKIPPING 1315

Fig. 4. Flexible decoding strategy.

Note that, in the production system, the special molten iron
should not skip any stage; in other words, we should assign
3 for the special molten iron. For example, in Fig. 3(c), the
second job is of the special molten iron, which should be
processed through all the stages.

B. Flexible Decoding Strategy

Note that, the permutation-based encoding mechanism is
easy to implement. However, the scheduling sequence at the
following stages should be decided according to the comple-
tion time at the previous stage, which is not flexible and can
result in many promising search space regions being ignored.
For example, if more than one job with different completion
times at the previous stage are waiting for the same available
machine, the job with the earlier completion time will deter-
ministically be processed first. For example, consider two jobs
J1 and J2 with completion times of 25 and 30 at the first stage
that are waiting for the same available machine M1. At time
point 35, M1 is available, and J1 will be processed first because
it has an earlier completion time at the first stage than J2.

To avoid ignoring more promising search space regions, we
propose a flexible decoding strategy. Let π = (π1, π2, . . . , πn)

be a solution, and π(j) = (π
(j)
1 , π

(j)
2 , . . . , π

(j)
|�j|) represent the

job permutation generated in stage j by sorting jobs in increas-
ing order of their completion times at stage j − 1. Denoted
as μk the idle time of machine k. The pseudocode is given
in Fig. 4.

It should be noted that, at the first stage, all the jobs are
processed according to their sequence in the first part of the
scheduling vector. In the following stages, all the jobs are first
sequenced in an ascending order according to their completion
times at the previous stage. Then, if one machine becomes

available while several jobs are waiting for it, all the waiting
jobs will be scheduled according to their occurrence values in
the corresponding sub-vectors.

For the above example, let the completion times at the first
stage for the two jobs J2 and J3 be equal to 30 and 25,
respectively. Both J2 and J3 are waiting for M2 in the sec-
ond stage, which is available at time point 35. Without the
reference sequence, as commonly used in [4]–[17], J3 will be
processed first because it has an earlier completion time at the
first stage. In this paper, according to the reference sequence
in the second part, J2 is to be processed first, which increases
the flexibility and can thus widen the search area.

C. Right-Shift Strategy

In this section, we present a right-shifting strategy to mini-
mize the penalty of earliness. Suppose πk = (πk

1 , πk
2 , . . . , πk

h)

is the job sequence on machine k at the last stage. We first
decode a block that contains operations that are processed
consecutively on the same machine. Let Bi be the block that
contains the operation πk

i ; in other words, if two operations
are processed without any idle time, then we set them to the
same block. Let γ = (γB1,B2 , γB2,B3 , . . . , γBq−1,Bq , γBq,Bq+1)

be the set of idle times between two consecutive blocks and
γBi,Bi+1 be the idle time between Bi and Bi+1. Suppose there
are q blocks B = (B1, B2, . . . , Bq) being processed on a given
machine; we set γBq,Bq+1 = ∞. Let δk = (δ1, δ2, . . . , δh) be
the earliness values for πk = (πk

1 , πk
2 , . . . , πk

h), which is com-
puted as follows: if bi,5 ∈ [di

s, di
e], set δi = 0; otherwise, set

δi = di
s −bi,5. Note that, δi > 0 represents that the correspond-

ing operation πk
i starts earlier than its due date, δi = 0 means

πk
i starts on its due date, and δi < 0 means πk

i starts after
its due date. Let SE be the set that includes all the operations
with δi > 0; SD includes the operations with δi = 0, and ST

the same for δi < 0.
To right shift the operation πk

i , we should consider all the
operations following πk

i in Bi and also the idle time γBi,Bi+1 .
The decrease in the earliness value due to a single right shift of
πk

i is w2|SE|, the increase in the tardiness value is w3|ST |, and
the increase in the average sojourn time value is w1|SBi |/n.
Therefore, if the condition w2|SE| > w3|ST | + w1|SBi |/n is
satisfied, we can right-shift πk

i by one time unit. Meanwhile, to
right any operation, we should consider the idle time between
the current and following blocks. If we can right shift to erase
the idle time γBi,Bi+1 , then the two blocks will be combined
into one block. The right-shift procedure is given in Fig. 5 with
the computational time complexity (O(n2)).

Given the job sequence illustrated in Fig. 6(a), there are
four blocks, i.e., B = {{1, 2}{3}, {4, 5, 6, 7}, {8}}. We first
compute the idle time between each pair of consecutive
blocks: {5, 20, 10}. Then, we compute the earliness values
δk = {10, 0,−10, 0, 20, 10, 10, 10}. Let w1 = 10, w2 = 10,
and w3 = 5. For the first block, we divide all the operations
into three sets, i.e., SE = {1}, ST = {}, and SD = {2}.

For the first loop, we obtain the first operation with a pos-
itive earliness value πk

1 , and the condition w2|SE| − w3|ST | −
w1|SBi |/n = 10×1−10×2/8 = 7.5 > 0. Next, we obtain � =
min{10, 10} = 10 and θ = min{10, 5}. Therefore, we can right

1316 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016

Fig. 5. Right-shift strategy.

Fig. 6. Example procedure of the right-shift strategy. (a) Original Gantt
chart. (b) Gantt chart after the first loop. (c) Gantt chart after the second
loop. (d) Gantt chart after the third loop.

shift the first block by five time units. After the right-shifting,
we obtain the new starting time for each operation in the first
block, i.e., b1,5 = 85 and b2,5 = 125. Then, the updated earli-
ness values should be δk = {5, 0,−10, 0, 20, 10, 10, 10}. The
new block B1 = {1, 2, 3}, i.e., the following block should be
combined into the first block because the idle time between
them has been erased. Fig. 6(b) illustrates the Gantt chart after
applying the first loop.

For the second loop, we first divide the new block into three
different sets: 1) SE = {1}; 2) SD = {2}; and 3) ST = {3}.
Then, we obtain the first operation with a positive earliness
value πk

1 , and the condition w2|SE|−w3|ST |−w1|SBi |/n = 10×
1−5×1−10×3/8 > 0. Then, we obtain � = min{5, 5} = 5
and θ = min{5, 20}. Therefore, we can further right shift the
first block five time unit. After the right shifting, we obtain
the new starting time for each operation in the first block, i.e.,
b1,5 = 90, b2,5 = 130, and b3,5 = 175. Then, the updated
earliness values should be δk = {0, 0,−15, 0, 20, 10, 10, 10}.
Then, the first block becomes as follows: SD = {1, 2} and
ST = {3}. Fig. 6(c) describes the Gantt chart after applying
the second loop.

For the third loop, we obtain the first operation with a pos-
itive earliness value πk

5 , and we should consider {5, 6, 7} as
a block, where SE = {5, 6, 7}. Then, we obtain the condi-
tion w2|SE| − w3|ST | − w1|SBi |/n = 10 × 3 = 30 > 0. Then,
we obtain � = min{10,∞} = 10 and θ = min{10, 10} = 10.
Therefore, we can right shift the second block {5, 6, 7}
by ten time units. After the right shifting, we obtain the
new starting time, i.e., b5,5 = 290, b6,5 = 340, and
b7,5 = 370. Then, the updated the earliness values should
be δk = {0, 0,−15, 0, 10, 0, 0, 10}. Then, the updated B =
{{1, 2, 3}{4}, {5, 6, 7, 8}}. For the last block, because the con-
dition w2|SE| − w3|ST | − w1|SBi |/n = 0, we cannot right shift
any operation further. Therefore, the last Gantt chart after right
shifting is in Fig. 6(d).

It can be observed that, before applying the right-shift strat-
egy, the earliness and tardiness penalties are 600 and 50,
respectively. After applying the strategy, the resulted earliness
and tardiness penalties are 200 and 75, respectively. Note that,
the average sojourn time penalty increases by 75. Therefore,
we get a decrease of 300 for the total penalties by using the
proposed right-shift strategy.

D. Neighborhood Structures

Considering the problem characteristics of the molten iron
scheduling problem, we propose two levels of neighbor-
hood structure for iron skipping and operation scheduling
named the skipping and scheduling neighborhood structures,
respectively.

1) Skipping Neighborhood Structure: The skipping neigh-
borhood structure provides a different skipping plan for the
current individual. To consider both exploitation and explo-
ration capability of the proposed algorithm, we present a novel
skipping neighborhood structure, which is given in Fig. 7.

2) Scheduling Neighborhood Structure: For solving the
hybrid flowshop scheduling problem, the neighborhood struc-
tures, such as insertion, swap, pairwise exchange, and mul-
tiswap, are commonly used in the literature. Pan et al. [14]
verified that the multiswap neighborhood can be evaluated
more efficiently than the other three neighborhood structures.
In this paper, considering the problem structure and the bal-
ance of the exploration and exploitation abilities, we combine
the insertion and mutation neighborhood structures in a ran-
dom manner. Fig. 8(a) gives an example of the mutation
neighborhood structure, and Fig. 8(b) gives an example of the
insertion neighborhood structure.

LI et al.: IMPROVED ABC ALGORITHM FOR SOLVING HFF WITH DYNAMIC OPERATION SKIPPING 1317

Fig. 7. Procedure of the skipping neighborhood structure.

Fig. 8. Scheduling neighborhood structures. (a) Mutation and (b) insertion
neighborhood structures.

E. Population Initialization

To generate a population with a high level of solution
quality and diversity, we propose a very simple population
initialization heuristic, which is given as follows.

Step 1: Let counter Cnt = 1, and perform the following
steps until Cnt = PS.

Step 2: Generate a solution in a random way and eval-
uate it. If the new generated solution is not the
same as any individual in the current population,
insert it into the population and let Cnt = Cnt + 1;
otherwise, discard it.

Step 3: Go back to step 2.

F. Employed Bee Phase

The employed bees complete the exploitation task around
their given solutions. When applying the proposed DABC
algorithm for solving the HFF-D problem, we set off all
employed bees to perform the exploitation task around the
given food source. The detailed steps for each employed bee
are given as follows.

Step 1: Apply the ith employed bee to the ith food source
in the current population.

Step 2: Produce NS neighboring food sources around the
given solution.

Step 3: Evaluate each newly generated food source and
perform the following replacement processes: 1) if
its fitness value is better than the best solution
found so far, then replace the latter and 2) if its
fitness value is better than the current food source,
then replace the latter.

G. Onlooker Bee Phase

In the canonical ABC algorithm, similar to the wheel selec-
tion in GA, an onlooker bee selects a food source with
a winning probability from several candidate solutions. In this
paper, we adopt a simple method for each onlooker bee as
follows.

Step 1: Randomly select three solutions in the current
population.

Step 2: Compare the three selected solutions; select the
solution with the minimum fitness value as the
current solution.

Step 3: Produce NS neighboring food sources around the
given solution.

Step 4: Evaluate the newly generated food source, and
update both worst solution and best one in the
current population.

H. Scout Bee Phase

In the classical ABC algorithm, a solution becomes an aban-
doned one if it cannot be improved after a certain number of
generations. Then, a scout bee replaces the abandoned solution
with a randomly generated solution to maintain the popula-
tion with a high level of quality. In this paper, we apply the
following steps for each scout bee.

Step 1: For the best solution found thus far, perform the
following steps St times: apply the insertion oper-
ator for the scheduling vector and the proposed
ET_skipping_neighbor function for the skipping
vector.

Step 2: Compare the new generated neighboring solutions,
and select the best one as the current solution. If
there are several solutions with the same best fitness
value, then randomly select one.

I. Enhanced Local Search

To further improve the searching ability of the proposed
algorithm, we develop an enhanced local search for the best
solution found so far. That is, after the three artificial bee
processes discussed in the above section, the enhanced local
search will be applied to the best solution for enhanced search-
ing. The detailed steps of the enhanced local search are as
follows.

Step 1: For the best solution, perform the following steps
until the stop condition is satisfied.

Step 2: Destruction Phase: Randomly generate Ed posi-
tions in the skipping vector for the current solution,
where Ed is a system parameter. Delete the corre-
sponding elements from the skipping vector, and
insert these deleted elements into a vector pd.

1318 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016

Step 3: Construction Phase: For each element i in pd,
perform the following steps until pd is empty.

Step 3.1: For the job at position i, change the
skipping type from 0 to 3, and evaluate
the resulting solutions.

Step 3.2: Select the best skipping type for the
deleted element i.

Step 3.3: Go back to step 3.

J. Framework of the Proposed Algorithm

The detailed steps of the proposed DABC algorithm are
given as follows.

Step 1: Initialization phase.
Step 1.1: Set the system parameters.
Step 1.2: Initialize the population (see

Section III-E).
Step 2: Evaluate each solution in the population (see

Sections III-B and III-C). Select the best solution
as the current incumbent individual.

Step 3: If the stopping criterion is satisfied, output the best
solution; otherwise, perform steps 4–8.

Step 4: Employed bee phase (see Section III-F).
Step 4.1: Set the ith employed bee to the ith food

source in the current population and
perform the exploitation task by using
the proposed neighborhood structures
discussed in Section III-D.

Step 4.2: Evaluate the newly generated solu-
tions, and update both current solution
and best one.

Step 5: Onlooker bees phase (see Section III-G).
Step 5.1: For each i = 1, 2, . . . , PS, repeat the

following steps.
Step 5.2: Randomly select three solutions in the

current population, and select the best
one as the food source for the onlooker
by using the tournament selection
method.

Step 5.3: Generate several neighboring solutions
by using the proposed neighborhood
structures discussed in Section III-D
around the selected food source.

Step 5.4: Evaluate the newly generated solu-
tions, and update both worst solution
and best one.

Step 6: Scout bee phase (see Section III-H). If a solution
in the population has not been improved during the
limit trials, abandon it and put a scout bee around it.

Step 7: Perform the enhanced local search process around
the best food source found so far (see Section III-I).
Replace the worst food source in the current pop-
ulation with the best one.

Step 8: Go back to step 3.

IV. EXPERIMENTAL EVALUATION

This section discusses the computational experiments used
to evaluate the performance of the proposed algorithm.

Our algorithm was implemented in C++ on an Intel Core i7
3.4 GHz PC with 16 GB of memory. To verify the effective-
ness and efficiency of the proposed DABC algorithm, we make
detailed comparisons with three presented efficient algorithms,
i.e., GA [31], ABC [14], and PSO [21]. The main reasons for
selecting GA, ABC, and PSO are the following: 1) the ABC
algorithm in [14] is developed for solving the steel-making
casting problem, which is an important realistic application
of HFS. The comparison between DABC and ABC is mainly
used to verify the efficiency of the proposed strategies and
2) GA and PSO are the two recently presented algorithms for
solving the HFF problem, whereas the extension HFF-D prob-
lem is considered in this paper. Because the HFF-D problem
is first proposed in this paper and there is no literature for it,
we select and extend GA, PSO, and ABC to solve the HFF-D
problem to verify the performance of the proposed DABC
algorithm.

The computational times for each instance are set to 100 s.
The best results of the experiments for the 15 randomly gen-
erated problems over 30 independent runs were collected for
performance comparisons. The Taguchi method of design of
experiments (DOE) [44] is utilized to test the influence of
the key parameters on the performance of the proposed algo-
rithm. The fitness value for each solution is computed and
used to make detailed comparisons. The fitness value is to
minimize the four penalty values computed as in (1)–(4). The
performance measure is relative percentage increase (RPI),
calculated as follows:

RPI(f) = fc − fb
fb

× 100 (12)

where fb is the fitness value of the best solution found by all
the compared algorithms, while fc is the fitness value of the
best solution generated by a given algorithm.

A. Experimental Instances

In this paper, we generate 15 problem instances according
to the practical situations of the iron and steel production in
Baosteel complex, the largest and most advanced iron and steel
enterprise in China. The technological constraints are given as
follows.

1) There are four blast furnaces, two preprocessing devices,
five dephosphorization or desulphurization machines,
two post-processing furnaces, and five iron pouring cen-
ters in the shop. For each torpedo or job, the processing
times are randomly generated in the range of [35, 40]
for the common irons and [40, 45] for the specific
molten irons.

2) For each machine, the release time is not considered as
a technical capability.

3) The transfer times for each of the two consecutive stages
are in the range [10–15].

4) The setup time for each job is not considered as
a technical capability.

5) For the due date window, the start and end time points
for all irons are set to [300 ± δ, 15n ± δ] according to
the practical production data, where n represents the total
number of irons in the system and δ represents a random
integer number in [0, 30].

LI et al.: IMPROVED ABC ALGORITHM FOR SOLVING HFF WITH DYNAMIC OPERATION SKIPPING 1319

TABLE I
COMBINATIONS OF KEY PARAMETER VALUES

Fig. 9. Factor level trend of three key parameters.

6) The penalty coefficient values are set according to the
practical experiences: w1 = 1, w2 = 1, w3 = 0.5, and
w4 = 1.

B. Experimental Parameters

The five parameters include the population size (PS), the
size of neighboring (SN) area for the employee and onlooker
bees, the local search times for the scout bee (St), the destruc-
tion length (Ed) for the enhanced local search procedure,
and the number of iterations during which the solution does
not improve (Ln). According our preliminary experiments, the
levels of the five parameters are given in Table I.

The Taguchi method of DOE is utilized to test the influence
of these three parameters on the performance of the proposed
algorithm. For the first three parameters, an orthogonal array
L16(43) is selected. For each parameter combination, the pro-
posed algorithm is run independently 30 times, and then the
average RPI values obtained by the compared algorithms are
collected as the response variable. Fig. 9 reports the factor
level trend of the three parameters.

It can be observed from Fig. 9 that the proposed algorithm
has better performance under the three parameters with the
following levels: 1) PS with level 3; 2) SN with level 1; and
3) St with level 2. We can also see from Fig. 9 that the param-
eter PS is more critical than the other two parameters in the
proposed algorithm. A large value of PS means more compu-
tational resources consumed in the exploration procedure, and
the algorithm will lose exploitation ability. A too small value
of PS means the loss of exploration ability of the algorithm.

TABLE II
COMPARISON OF RPI VALUES FOR THE

DYNAMIC ENCODING MECHANISM

Therefore, to balance the exploration and exploitation ability,
the suitable value for the key parameter PS is set to 50 in
the proposed algorithm. According to the above analysis, the
suitable values for the three considered parameters are 50, 3,
and 10 for PS, SN, and St, respectively.

Similar experiments are also carried out to optimize other
parameters that are used for comparison. Their desirable
parameter settings based on the experimental results are
Ed = 1/20n and Ln = 20.

C. Effectiveness of the Dynamic Encoding Mechanism

To investigate the effectiveness of the dynamic encoding
mechanism, we realize the DABC algorithm presented in
Section III and the DABC algorithm using a permutation-based
representation (DABCND for short). The parameters for the
two compared algorithms are set the same as in Section IV-B.
The only difference between DABC and DABCND is that
the DABC algorithm embeds the dynamic encoding mecha-
nism. The two compared algorithms are tested on the same
PC and with the same test instances. After 30 independent
runs, the average RPI results for each instance are collected
for comparison, which is given in Table II.

In Table II, the first column provides the problem name
and the second column lists the scale size. The following
two columns report the RPI values for DABC and DABCND,
respectively. It can be observed from Table II that: 1) DABC
obtained 15 optimal values out of the given 15 instances,
whereas DABCND obtains no optimal values; 2) from the last
row in the table, we can see that DABC performs the best; and
3) in a nutshell, we can obtain better results after applying the
proposed dynamic encoding mechanism.

The advantages of the proposed dynamic encoding method
are as follows: 1) with the permutation-based encoding at the

1320 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016

TABLE III
COMPARISON OF THE RPI VALUES FOR THE

FLEXIBLE DECODING METHOD

first part of evolution, the algorithm can locate the optimal
search space quickly, and thus, can increase the searching abil-
ity; 2) detailed representation at the second part of evolution,
the algorithm can perform a fine-grained search in the optimal
searching locations, and therefore, increase the solution qual-
ity; 3) dynamic representation, the algorithm can balance the
exploration and exploitation abilities; and 4) skipping vector,
the algorithm can adjust the skipping status for each operation,
and thus, widen the search space.

D. Effectiveness of the Flexible Decoding Method

In Section III, we propose a flexible decoding method to
enhance the search ability. To investigate the effectiveness of
the flexible decoding method, we realize the DABC algorithm
presented in Section III and the DABC algorithm without using
the flexible decoding method (DABCNF for short). The param-
eters for the two compared algorithms are set the same as in
Section IV-B. The two compared algorithms are tested on the
same PC and with the same test instances. After 30 inde-
pendent runs, the average RPI results for each instance are
collected for comparison, which is given in Table III.

It can be observed from Table III that: 1) DABC obtained
14 optimal values out of the given 15 instances, whereas
DABCNF obtained only one optimal value; 2) from the last
row in the table, we can see that DABC obtained an average
RPI value of 0.03, which is approximately 1500 times smaller
than that of DABCND; and 3) in conclusion, the proposed
DABC algorithm performs better than DABCNF.

E. Effectiveness of the Proposed Right-Shift Heuristics

To investigate the effectiveness of the right-shift heuristic,
we realize the DABC algorithm and the DABC algorithm
without using the right-shift heuristic (DABCNR for short).

TABLE IV
COMPARISON OF THE RPI VALUES FOR THE

RIGHT-SHIFT HEURISTICS

The parameters for the two compared algorithms are set the
same as in Section IV-B. The two compared algorithms are
tested on the same PC and with the same test instances. After
30 independent runs, the average RPI results for each instance
are collected for comparison, which is given in Table IV.

It can be observed from Table IV that: 1) DABC obtained
optimal values for all the 15 instances and 2) from the last
row in the table, we can see that DABC obtained an average
RPI value of 0.00, which is significantly better than that of
DABCNR.

F. Effectiveness of the Skipping Neighborhood Structure

In Section III, we propose a novel skipping neighbor-
hood structure considering the earliness/tardiness penalty. To
investigate the effectiveness of the neighborhood structure,
we realize the skipping neighborhood structure presented in
Section III and the commonly used mutation neighborhood
structure [26], [39]. The mutation neighborhood structure ran-
domly selects a common iron and changes another skipping
type for it in a random manner. The parameters for the two
compared algorithms are set the same as in Section IV-B. The
two compared algorithms are tested on the same PC and with
the same test instances. After 30 independent runs, the aver-
age RPI results for each instance are collected for comparison,
which is given in Table V.

It can be observed from Table V that: 1) DABC with the
proposed skipping neighborhood structure obtained 14 opti-
mal values out of the given 15 instances, and the algorithm
with the mutation neighborhood structure obtains one opti-
mal result; 2) from the last row in the table, we can see that
our method obtained an average RPI value of 0.02, which is
approximately 800 times smaller than that of the algorithm
with the mutation method; and 3) in a nutshell, the skipping

LI et al.: IMPROVED ABC ALGORITHM FOR SOLVING HFF WITH DYNAMIC OPERATION SKIPPING 1321

TABLE V
COMPARISON OF THE RPI VALUES FOR SKIPPING

NEIGHBORHOOD STRUCTURES

neighborhood structure enhances the search ability of the
algorithm.

G. Comparisons With the Presented Efficient Algorithms

To make a fair comparison between the proposed algorithm
and other three compared algorithms, we implement GA, PSO,
and ABC with two types.

1) In the first type, each compared algorithm is coded with
their own components, i.e., encoding/decoding mech-
anism, neighborhood structures, and local or global
search approaches. Here, we named the compared algo-
rithms in the first type GA-I, PSO-I, and ABC-I,
respectively. The skipping vector is also used in GA-I,
PSO-I, and ABC-I to record the skipping status for each
operation.

2) In the second type, all the compared algorithms are
implemented with the same components as the proposed
DABC algorithm, i.e., the same encoding/decoding
mechanism, right-shift heuristic, and population initial-
ization method. Then, all the four compared algorithms
perform their own evolution operators. Here, we named
the compared algorithms in the second type GA-II,
PSO-II, and ABC-II, respectively. Each compared algo-
rithm is run independently 30 times for each given
instance. All algorithms adopt the same maximum
elapsed CPU time limit of t = 100 s as a termination cri-
terion. This criterion is practical in realistic production
systems.

1) Comparisons With GA-I, PSO-I, and ABC-I: The
detailed implementation of GA-I, PSO-I, and ABC-I is the
following.

a) For GA-I, the following components as in [31] are
embedded: the permutation-based encoding, the k-way

TABLE VI
COMPARISONS OF THE RPI VALUES WITH GA-I, PSO-I, AND ABC-I

selection, the crossover operators (including right-
hand-side-segment swap crossover, single point order
crossover (SPOX)-1, SPOX-2, and two-point order
crossover), the mutation operators (including the
order shift and the swap operator), and the sequential
implementation framework.

b) For PSO-I, the following components as in [21] are
embedded: the smallest position value-based encoding
method, the population initialization (one is generated
by Nawaz-Enscore-Ham heuristic, and others are ran-
domly generated from feasible solutions), the updated
movement approach by two global best solutions, and
the tabu search-based local search mechanism.

c) For ABC-I, the following components as in [14] are
embedded: the permutation-based representation, the
population initialization method, the employed bee,
onlooker bee and scout bee phases, the neighboring
solution generation operator, and the enhanced strategy.

The results for the comparisons with GA-I, PSO-I, and
ABC-I are reported in Table VI. It can be observed from
Table VI that: a) in comparison with the other three algo-
rithms, the proposed DABC obtained all improved values for
the given 15 instances, which is significantly better than the
other compared algorithms; b) on average, the proposed DABC
obtained an RPI value of 0.00, which is obviously smaller
than that of the ABC-I algorithm, the second best performer
with 131.73 overall average RPI; and c) the comparison results
show the efficiency and robustness of the proposed DABC
algorithm.

To determine whether the observed differences from the
above table are indeed significantly different, we also apply
the Friedman test [45], [46] and the Holm multiple compari-
son test [47] as a post hoc procedure for the pair comparison.

1322 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016

Fig. 10. Multicompare results for comparisons with GA-I, PSO-I, and ABC-I.

TABLE VII
COMPARISONS OF THE RPI VALUES WITH GA-II, PSO-II, AND ABC-II

Fig. 10 gives the pair comparison results after applying the
Holm multiple comparison test. It can be concluded from
Fig. 10 that the proposed DABC algorithm is significantly
better than the other compared algorithms.

Compared with the presented algorithms in the first type,
i.e., GA-I, ABC-I, and PSO-I, the main advantages of the
proposed DABC are as follows: a) a dynamic encoding
and flexible decoding mechanism considering the problem
characteristics is embedded in DABC, which makes DABC
more flexible to adapt to the considered production process;
b) several skipping and scheduling neighborhood structures are
presented to balance the exploration and exploitation abilities;
c) a right-shift heuristic considering the problem structure and
objective features is used to minimize the objective values; and
d) an enhanced local search is embedded in DABC to further
improve the exploitation ability.

2) Comparisons With GA-II, PSO-II, and ABC-II: The
results for the comparisons with GA-II, PSO-II, and ABC-II
are reported in Table VII. It can be observed from Table VII

Fig. 11. Multicompare results for comparisons with GA-II, PSO-II, and
ABC-II (w1 = 1, w2 = 1, w3 = 0.5, and w4 = 1).

TABLE VIII
COMPARISONS OF THE RPI VALUES WITH DIFFERENT WEIGHTED

VALUES (w1 = 0.5, w2 = 1, w3 = 1, AND w4 = 1)

that: a) DABC obtained all improved values for the 15 given
instances, which is significantly better than the other com-
pared algorithms; b) on average, DABC obtained an RPI value
of 0.00, whereas the second best performer with 3.60 overall
average RPI; and c) the comparison results show the efficiency
and robustness of the proposed DABC algorithm.

Fig. 11 reports the pairwise comparison results after apply-
ing the Holm multiple comparison test. It can be observed from
Fig. 11 that DABC is significantly better than the other com-
pared algorithms, even when all the algorithms are embedded
with the same components, i.e., the same encoding/decoding
mechanism, right-shift heuristic, and population initialization
method.

To further verify the performance efficiency of the proposed
DABC algorithm under different weighted values, we made
a comparison with GA-II, PSO-II, and ABC-II under different
type of weighted values, i.e., w1 = 0.5, w2 = 1, w3 = 1, and
w4 = 1. The comparison results in Table VIII and Fig. 12 also

LI et al.: IMPROVED ABC ALGORITHM FOR SOLVING HFF WITH DYNAMIC OPERATION SKIPPING 1323

Fig. 12. Multicompare results for comparisons with GA-II, PSO-II, and
ABC-II (w1 = 0.5, w2 = 1, w3 = 1, and w4 = 1).

show the efficiency of the proposed DABC algorithm with
different weighted values.

The main reasons that DABC outperforms GA-II, ABC-II,
and PSO-II are as follows. Compared with ABC-II, the main
advantages of DABC are the following: a) the proposed
skipping and scheduling neighborhood structures balance the
exploration and exploitation abilities; b) the enhanced local
search method can further improve the exploitation ability;
and c) the improved scout bee strategy can enhance the search
ability while maintaining the exploration ability. The same
advantages of DABC are also found in the comparison with
GA-II and PSO-II. Other advantage of DABC compared with
GA-II and PSO-II are the following: a) the proposed employed
bee strategy performs the exploitation and enhance the local
search ability; b) onlooker bees strategy further enhance the
search ability; and c) scout bee strategy can enhance the explo-
ration ability and avoid the algorithm being stuck in a local
optima.

V. CONCLUSION

The HFF with dynamic operation skipping in molten iron
scheduling problems is first proposed in this paper, which
can be applied in many realistic applications. An improved
DABC is proposed. The primary contributions of this paper
are as follows: 1) a dynamic encoding mechanism is presented
for the considered problem; 2) a flexible decoding method
is embedded; 3) to enhance the exploitation and exploration
capability of the proposed algorithm, several effective skip-
ping and scheduling neighborhood structures are developed;
4) a problem-specific right-shift strategy is developed; and
5) an enhanced local search procedure is utilized to enhance
the exploitation ability.

Comparative experimental results with three popular algo-
rithms, namely, GA, ABC, and PSO demonstrated that the
proposed DABC algorithm significantly outperforms the three
compared algorithms in solving the considered problems.
Experimental results and statistical analysis show the robust-
ness and efficiency of the proposed algorithm. Future work
on developing more effective and computationally more effi-
cient algorithms for solving the considered problems is highly

desirable. In addition, we should also apply the proposed algo-
rithm to solve scheduling problems with dynamic operation
skipping features in dynamic environments.

REFERENCES

[1] L. X. Tang, G. S. Wang, and J. Y. Liu, “A branch-and-price algorithm
to solve the molten iron allocation problem in iron and steel industry,”
Comp. Oper. Res., vol. 34, no. 10, pp. 3001–3015, 2007.

[2] D. A. Gomes, J. G. De Miranda, and M. C. De Souza, “Optimizing
the scheduling of torpedo cars to feed steelmaking with hot metal,”
in Proc. Int. Conf. Ironmaking Int. Symp. Iron Ore, Sãn Luís, Brazil,
2008, pp. 1021–1028.

[3] J. N. D. Gupta, “Two-stage, hybrid flow shop scheduling problem,”
J. Oper. Res. Soc., vol. 39, no. 4, pp. 359–364, 1988.

[4] R. Ruiz and J. A. V. Rodríguez, “The hybrid flow shop scheduling
problem,” Eur. J. Oper. Res., vol. 205, no. 1, pp. 1–18, 2010.

[5] I. Ribas, R. Leisten, and J. M. Framinan, “Review and classification of
hybrid flow shop scheduling problems from a production systems and
a solutions procedure perspective,” Comp. Oper. Res., vol. 37, no. 8,
pp. 1439–1454, 2010.

[6] C. Oguz and M. Ercan, “A genetic algorithm for hybrid flow-shop
scheduling with multiprocessor tasks,” J. Schedul., vol. 8, no. 4,
pp. 323–351, 2005.

[7] R. Ruiz and C. Maroto, “A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility,” Eur. J. Oper.
Res., vol. 169, no. 3, pp. 781–800, 2006.

[8] O. Engin, G. Ceran, and M. K. Yilmaz, “An efficient genetic algorithm
for hybrid flow shop scheduling with multiprocessor task problems,”
Appl. Soft. Comput., vol. 11, no. 3, pp. 3056–3065, 2011.

[9] K. C. Ying and S. W. Lin, “Multiprocessor task scheduling in multistage
hybrid flowshops: An ant colony system approach,” Int. J. Prod. Res.,
vol. 44, no. 16, pp. 3161–3177, 2006.

[10] M. Zandieh, S. M. T. F. Ghomi, and S. M. M. Husseini, “An immune
algorithm approach to hybrid flow shops scheduling with sequence
dependent setup times,” Appl. Math. Comp., vol. 180, no. 1,
pp. 111–127, 2006.

[11] L. X. Tang and X. P. Wang, “An improved particle swarm optimiza-
tion algorithm for the hybrid flowshop scheduling to minimize total
weighted completion time in process industry,” IEEE Trans. Control.
Syst. Technol., vol. 18, no. 6, pp. 1303–1314, Nov. 2010.

[12] C. J. Liao, E. Tjandradjaja, and T. P. Chung, “An approach using particle
swarm optimization and bottleneck heuristic to solve hybrid flow shop
scheduling problem,” Appl. Soft. Comput., vol. 12, no. 6, pp. 1755–1764,
2012.

[13] K. Mao, Q. K. Pan, X. Pang, and T. Chai, “A novel Lagrangian
relaxation approach for a hybrid flowshop scheduling problem in the
steelmaking-continuous casting process,” Eur. J. Oper. Res., vol. 236,
no. 1, pp. 51–60, 2014.

[14] Q. K. Pan, L. Wang, K. Mao, J. H. Zhao, and M. Zhang, “An effective
artificial bee colony algorithm for a real-world hybrid flowshop problem
in steelmaking process,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 2,
pp. 307–322, Apr. 2013.

[15] Q. K. Pan and Y. Dong, “An improved migrating birds optimisation for
a hybrid flowshop scheduling with total flowtime minimization,” Inf. Sci.,
vol. 277, no. 1, pp. 643–655, 2014.

[16] Q. K. Pan, L. Wang, J. Q. Li, and J. H. Duan, “A novel discrete artificial
bee colony algorithm for the hybrid flowshop scheduling problem with
makespan minimization,” Omega, vol. 45, no. 1, pp. 42–56, 2014.

[17] J. Q. Li, Q. K. Pan, and F. T. Wang, “A hybrid variable neighborhood
search for solving the hybrid flow shop scheduling problem,” Appl. Soft.
Comput., vol. 24, no. 1, pp. 63–77, 2014.

[18] K. Wang and S. H. Choi, “A holonic approach to flexible flow
shop scheduling under stochastic processing times,” Comp. Oper. Res.,
vol. 43, no. 3, pp. 157–168, 2014.

[19] L. Tang, Y. Zhao, and J. Liu, “An improved differential evolution algo-
rithm for practical dynamic scheduling in steelmaking-continuous cast-
ing production,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 209–225,
Apr. 2014.

[20] M. E. Kurz and R. G. Askin, “Scheduling flexible flow lines with
sequence-dependent setup times,” Eur. J. Oper. Res., vol. 159, no. 1,
pp. 66–82, 2004.

[21] B. Naderi, S. Gohari, and M. Yazdani, “Hybrid flexible flowshop prob-
lems: Models and solution methods,” Appl. Math. Model., vol. 38, no. 24,
pp. 5767–5780, 2014.

1324 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 6, JUNE 2016

[22] R. J. Wittrock, “Scheduling algorithms for flexible flow lines,”
IBM. J. Res. Dev., vol. 29, no. 4, pp. 401–412, 1985.

[23] V. J. Leon and B. Ramamoorthy, “An adaptable problem-space-based
search method for flexible flow line scheduling,” IIE Trans., vol. 29,
no. 2, pp. 115–125, 1997.

[24] M. E. Kurz and R. G. Askin, “Comparing scheduling rules for flexible
flow lines,” Int. J. Prod. Econ., vol. 85, no. 3, pp. 371–388, 2003.

[25] D. Quadt and D. Kuhn, “A taxonomy of flexible flow line scheduling
procedures,” Eur. J. Oper. Res., vol. 178, no. 3, pp. 686–698, 2007.

[26] R. Ruiz, F. S. Serifoglu, and T. Urlings, “Modeling realistic hybrid flex-
ible flowshop scheduling problems,” Comp. Oper. Res., vol. 35, no. 4,
pp. 1151–1175, 2008.

[27] C. T. Tseng, C. J. Liao, and T. X. Liao, “A note on two-stage hybrid
flowshop scheduling with missing operations,” Comp. Ind. Eng., vol. 54,
no. 3, pp. 695–704, 2008.

[28] B. Naderi, M. Zandieh, and S. F. Ghomi, “A study on integrating
sequence dependent setup time flexible flow lines and preventive main-
tenance scheduling,” J. Intell. Manuf., vol. 20, no. 6, pp. 683–694,
2009.

[29] T. Urlings, R. Ruiz, and T. Stützle, “Shifting representation search for
hybrid flexible flowline problems,” Eur. J. Oper. Res., vol. 207, no. 2,
pp. 1086–1095, 2010.

[30] M. Zandieh and N. Karimi, “An adaptive multi-population genetic
algorithm to solve the multi-objective group scheduling problem in
hybrid flexible flowshop with sequence-dependent setup times,” J. Intell.
Manuf., vol. 22, no. 6, pp. 979–989, 2011.

[31] F. M. Defersha and M. Y. Chen, “Mathematical model and parallel
genetic algorithm for hybrid flexible flowshop lot streaming problem,”
Int. J. Adv. Manuf. Technol., vol. 62, nos. 1–4, pp. 249–265, 2012.

[32] Z. T. Li, Q. X. Chen, N. Mao, X. M. Wang, and J. J. Liu, “Scheduling
rules for two-stage flexible flow shop scheduling problem subject to
tail group constraint,” Int. J. Prod. Econ., vol. 146, no. 2, pp. 667–678,
2013.

[33] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic pro-
gramming via iterated local search for dynamic job shop scheduling,”
IEEE Trans. Cybern., vol. 45, no. 1, pp. 1–14, Jan. 2015.

[34] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Dept. Comput. Eng., Erciyes Univ., Kayseri, Turkey,
Tech. Rep. TR06, 2005.

[35] D. Karaboga and B. Basturk, “On the performance of artificial
bee colony (ABC) algorithm,” Appl. Soft. Comput., vol. 8, no. 1,
pp. 687–697, 2008.

[36] D. Karaboga and B. Akay, “A comparative study of artificial bee colony
algorithm,” Appl. Math. Comput., vol. 214, no. 1, pp. 108–132, 2009.

[37] D. Karaboga and B. Basturk, “A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony (ABC)
algorithm,” J. Glob. Opt., vol. 39, no. 3, pp. 459–471, 2007.

[38] Q. K. Pan, M. F. Tasgetiren, P. N. Suganthan, and T. J. Chua, “A discrete
artificial bee colony algorithm for the lot-streaming flow shop scheduling
problem,” Inf. Sci., vol. 181, no. 12, pp. 2455–2468, 2010.

[39] J. Q. Li, Q. K. Pan, and K. Z. Gao, “Pareto-based discrete artificial bee
colony algorithm for multi-objective flexible job shop scheduling prob-
lems,” Int. J. Adv. Manuf. Technol., vol. 55, nos. 9–12, pp. 1159–1169,
2011.

[40] W. F. Gao, S. Y. Liu, and L. L. Huang, “A novel artificial bee colony
algorithm based on modified search equation and orthogonal learning,”
IEEE Trans. Cybern., vol. 43, no. 3, pp. 1011–1024, Jun. 2013.

[41] F. G. Mohammadi and M. S. Abadeh, “Image steganalysis using a bee
colony based feature selection algorithm,” Eng. Appl. Artif. Intell.,
vol. 31, no. 1, pp. 35–43, 2014.

[42] T. M. Fatih, Q. K. Pan, P. N. Suganthan, and A. Oner, “A discrete
artificial bee colony algorithm for the no-idle permutation flowshop
scheduling problem with the total tardiness criterion,” Appl. Math.
Model., vol. 37, nos. 10–11, pp. 6758–6779, 2013.

[43] J. Q. Li and Q. K. Pan, “Solving the large-scale hybrid flow shop
scheduling problem with limited buffers by a hybrid artificial bee colony
algorithm,” Inf. Sci., vol. 316, pp. 487–502, Sep. 2015.

[44] D. C. Montgomery, Design and Analysis of Experiments. New York,
NY, USA: Wiley, 2005.

[45] W. J. Conover, Practical Nonparametric Statistics. New York, NY, USA:
Wiley, 1980.

[46] J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as methodology for compar-
ing evolutionary intelligence algorithms,” Swarm Evol. Comput., vol. 1,
no. 1, pp. 3–18, 2011.

[47] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scand. J. Stat., vol. 6, no. 2, pp. 65–70, 1979.

Jun-qing Li (M’10) received the master’s degree
in computer science and technology from Shandong
Economic University, Jinan, China, in 2004.

Since 2004, he has been with the School
of Computer Science, Liaocheng University,
Liaocheng, China, where he became an Associate
Professor in 2008. His current research interests
include intelligent optimization and scheduling. He
has authored over 30 refereed papers.

Quan-ke Pan received the B.Sc. and Ph.D. degrees
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 1993 and 2003,
respectively.

Since 2003, he has been with the School
of Computer Science, Liaocheng University,
Liaocheng, China, where he was a Full Professor
in 2006. He has been with the State Key
Laboratory of Synthetical Automation for Process
Industries, Northeastern University, Shenyang,
China, since 2011. His current research interests

include intelligent optimization and scheduling. He has authored over 200
refereed papers.

Peiyong Duan received the B.Sc. degree from
Shandong University, Jinan, China, in 1996, and the
Ph.D. degree from Shanghai Jiao Tong University,
Shanghai, China, in 1999.

From 1999 to 2014, he was with the School of
Information and Electrical Engineering, Shandong
Jianzhu University, Jinan, where he was an Associate
Professor and a Full Professor in 1999 and 2002,
respectively. Since 2014, he has been with the
School of Computer Science, Liaocheng University,
Liaocheng, China. His current research interests

include discrete optimization and scheduling. He has authored over 60
refereed papers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

