
932 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

A Hybrid Fruit Fly Optimization Algorithm for the
Realistic Hybrid Flowshop Rescheduling

Problem in Steelmaking Systems
Jun-Qing Li, Quan-Ke Pan, Member, IEEE, and Kun Mao

Abstract—In this study, we propose a hybrid fruit fly optimiza-
tion algorithm (HFOA) to solve the hybrid flowshop rescheduling
problem with flexible processing time in steelmaking casting
systems. First, machine breakdown and processing variation
disruptions are considered simultaneously in the rescheduling
problem. Second, each solution is represented by a fruit fly with a
well-designed solution representation. Third, two novel decoding
heuristics considering the problem characteristics, which can
significantly improve the solution quality, are developed. Several
routing and scheduling neighborhood structures are proposed
to balance the exploration and exploitation abilities. Finally, we
propose an effective HFOA with well-designed smell and vision
search procedures. In addition, an iterated greedy (IG) local
search is embedded in the proposed algorithm to further enhance
its exploitation ability. The proposed algorithm is tested on sets of
instances generated from industrial data. Through comprehensive
computational comparisons and statistical analyses, the perfor-
mance of the proposed HFOA algorithm is favorably compared
against several algorithms in terms of both solution quality and
efficiency.

Note to Practitioners—The steelmaking rescheduling process is
critical to the effective operation of iron and steel production. This
study models the steelmaking rescheduling problem with flexible
processing time as a complex hybrid flowshop in which two types
of disruptions, machine breakdown and processing variation, are
considered concurrently. A weighted sum of the five objectives,

Manuscript received October 18, 2014; revised March 25, 2015; accepted
April 18, 2015. Date of publication May 13, 2015; date of current version April
05, 2016. This paper was recommended for publication by Associate Editor
R. Uzsoy and Editor L. Shi upon evaluation of the reviewers’ comments. This
work was supported in part by the National Science Foundation of China
under Grants 61104179, 61174187, 51435009, and 61374187, the Program
for New Century Excellent Talents in University under Grant NCET-13-0106,
the Specialized Research Fund for the Doctoral Program of Higher Education
under Grant 20130042110035, the Science Foundation of Liaoning Province in
China under Grant 2013020016, the Basic Scientific Research Foundation of
Northeast Universityunder Grants N110208001 and N130508001, the Starting
Foundation of Northeast University under Grant 29321006, Key Laboratory
Basic Research Foundation of Education Department of Liaoning Province
under Grant LZ2014014, and the IAPI Fundamental Research Funds under
Grant 2013ZCX02. (Corresponding author: Quan-Ke Pan.)
J. Li is with the State Key Laboratory of Synthetical Automation for Process

Industries, Northeastern University, Shenyang 110819, China, and also with the
School of Computer Science, Liaocheng University, Liaocheng 252059, China
(e-mail: Lijunqing.cn@gmail.com).
Q. Pan is with the State Key Lab of Digital Manufacturing Equipment and

Technology, Huazhong University of Science and Technology, Wuhan 430074,
China (e-mail: panquanke@gmail.com).
K. Mao is with the State Key Laboratory of Synthetical Automation for

Process Industries, Northeastern University, Shenyang 110819, China (e-mail:
mao_kun@126.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TASE.2015.2425404

including minimization of the average sojourn time, earliness
penalty, tardiness penalty, cast-break penalty, and system insta-
bility penalty, is considered in the proposed algorithm.We develop
an effective hybrid fruit fly optimization algorithm (HFOA) that
applies two vectors to represent individuals and presents routing
and scheduling neighborhood structures. An IG-based local
search procedure is embedded to enhance the exploitation ability
of the proposed algorithm. Two decoding heuristics considering
the problem characteristics are developed. The effectiveness of
the proposed HFOA is demonstrated through comparisons to
other well-known and recently developed meta-heuristics. This
work can be extended to practical problems by considering other
types of disruptions. In addition, the proposed HFOA can also be
generalized, and to other hybrid flowshop rescheduling problems.
Index Terms—Fruit fly optimization algorithm, heuristic, hybrid

flowshop, iterated greedy, rescheduling.

I. INTRODUCTION

I N modern iron and steel production systems, the sched-
uling of steelmaking-continuous casting (SCC) plays an

important role and can increase production efficiency and profit.
The classical process of SCC can be divided into three stages,
i.e., steelmaking, refining, and continuous casting [1]–[12].
Based on the above partition, Xuan and Tang modeled the
SCC process as a complex hybrid flowshop (HFS) problem
with batch production at the last stage [5]. Unlike the classical
HFS problem, SCC scheduling has many special realistic
requirements that should be satisfied. Therefore, the SCC
scheduling problem is harder than the classical HFS problem.
The mathematical programming model for the SCC scheduling
problem was proposed previously [1], [2]. Since then, many
heuristic and meta-heuristic algorithms have been applied to
the SCC scheduling problem, including Lagrangian relaxation
[4], [5], [12], the auction-based approach [6], tabu search (TS)
algorithm [10], and the discrete artificial bee colony (DABC)
algorithm [11]. Many hybrid algorithms have also been investi-
gated for the SCC scheduling problem, such as the combination
of ant colony optimization (ACO) and nonlinear optimization
methods [7] as well as decomposition with constraint prop-
agation [9]. Because of its complexity, most of the literature
on SCC scheduling problems has focused on scheduling in a
static environment, assuming deterministic production features,
such as that machines are always available, jobs arrive at the
predefined time point, and the processing time for each charge
is deterministic.
However, in a realistic production system, many dynamic

events, such as machine breakdown, new job arrival, cancella-

1545-5955 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 933

tion of jobs, job processing variation, and job release variation,
exist, and these events that cannot be predicted will make
the initial scheduling infeasible. Consequently, rescheduling,
which can repair an infeasible schedule or generate an optimal
schedule after a disruption, becomes essential. Aytug et al.
[13] classified rescheduling approaches into three groups: 1)
reactive approaches; 2) robust scheduling approaches; and 3)
predictive-reactive approaches. Vieira et al. provided a frame-
work of strategies, policies, and methods for the rescheduling
of manufacturing systems [14]. Ouelhadj and Petrovic pro-
vided a review of the state-of-the-art of dynamic scheduling
via different methods, such as heuristics, meta-heuristics,
multi-agent systems, and other artificial intelligence techniques
[15]. Allahverdi and Mittenthal addressed the problem of
minimizing the makespan in a two-machine flowshop when the
machines are subject to random breakdowns [16]. Rahmani and
Heydari considered a two-machine flowshop with uncertain
processing times and unexpected arrivals of new jobs [17].
In recent years, heuristic and meta-heuristic algorithms have
been developed to solve rescheduling problems. Tang et al.
proposed a neural network model and algorithm to solve the
dynamic hybrid flowshop scheduling problem [18]. Petrovic
and Duenas utilized a genetic algorithm (GA) and presented
a new fuzzy logic-based decision support system for parallel
machine scheduling/rescheduling in the presence of uncertain
disruptions [19]. Zandieh and Gholami proposed an immune
algorithm for scheduling an HFS with sequence-dependent
setup times and machines with random breakdowns [20].
Yang and Li investigated a clustering particle swarm optimizer
(PSO) for dynamic optimization problems [21]. Wang and Choi
presented a decomposition-based approach to solve flexible
flowshop (FFS) scheduling under random machine breakdown
[22]. Xuan and Li investigated the dynamic HFS scheduling
problem via an improved Lagrangian relaxation (LR) and a
batch decomposition strategy [23]. Rahmani et al. investigated
the rescheduling problem in flexible flowshop problems, in
which three types of disruptions are considered, i.e., new job
arrival, machine breakdown, and job processing time variation
[24]. Katragjini et al. utilized an iterated greedy (IG) algorithm
to solve rescheduling problems with consideration of simul-
taneous disruptions in flowshop scheduling problems [25].
These works demonstrate that evolutionary or meta-heuristic
algorithms are promising for solving rescheduling problems.
However, most of the above-mentioned studies investigated
dynamic scheduling problems in classical flowshop or HFS
problems without considering various specific industrial
constraints and can thus not be applied directly to realistic
production systems.
Compared to the extensive research on static SCC and

rescheduling in classical flowshop or hybrid flowshop sched-
uling problems, few studies have considered SCC rescheduling
in a dynamic environment. Cowling et al. proposed a
multi-agent architecture for the integrated dynamic scheduling
of a hot strip mill (HSM) and a continuous caster [26], [27].
References [26], [27] considered continuous casters, a HSM
and a Slabyard but did not consider the scheduling process
in the steelmaking and refining stages. Roy et al. developed
a knowledge model for disturbances in steelmaking systems

[28]. Yu and Pan investigated the operation time delay in SCC
production systems and proposed a three-stage rescheduling
method that includes batch splitting (BS), forward scheduling
and backward scheduling [29]. Since it does not consider ma-
chine breakdown, this rescheduling method is difficult to apply
to realistic production. Tang et al. proposed a differential evolu-
tion (PIDE) algorithm with a real-coded matrix representation
for the SCC rescheduling problem, which included a two-step
method for generating the initial population and a new mutation
strategy [30]. A weighed sum of four objectives was consid-
ered, and two types of disruption events, including machine
breakdown and early or late arrival of jobs, were previously
investigated [30]. However, to adapt to the just-in-time (JIT)
rule, the earliness and tardiness penalties should be considered,
and an efficient problem-specific heuristic should be developed
to minimize the system penalty. Furthermore, in the above-pre-
sented literature regarding SCC rescheduling problems, none
have considered rescheduling in a flexible environment, e.g.,
adjustable processing time for each charge, which is very
common in realistic production systems of steelmaking casting
horizons.
In 2012, a fruit fly optimization algorithm (FOA), which

mimics the food search procedure of fruit fly swarms, was
developed by Pan [31]. The applications of FOA have verified
that FOA is competitive with other optimization algorithms
[31], [32]. The main advantages of the canonical FOA: 1) the
FOA has few parameters, which makes it easy to implement;
2) similar to other intelligent algorithms, such as GA, ACO,
and PSO, FOA is an evolutionary algorithm with a parallel
search framework in which many heuristics, meta-heuristics
and operators can be embedded; and 3) knowledge-based or
problem-specific approaches can also be easily incorporated
into the search framework of the FOA to further enhance its
exploitation and exploration abilities which makes it easy to
apply to real-world rescheduling problems. To the best of
our knowledge, there is no literature solving the steelmaking
rescheduling problem using FOA. Therefore, we solve the
flexible SCC rescheduling problem using an improved FOA.
In this study, we consider the SCC rescheduling problem with

following specific characteristics: 1) machine breakdown and
processing variation disruptions are considered simultaneously
in the rescheduling problem; 2) a weighted sum of the five re-
alistic objectives, including the average sojourn time, earliness
penalty, tardiness penalty, cast-break penalty, and system insta-
bility penalty, is minimized; and 3) adjustable processing times
for each charge are considered. The main contributions of this
study are the following: 1) each solution is represented by a
fruit fly with a well-designed solution representation; 2) two de-
coding heuristics considering the problem characteristics are de-
veloped to significantly improve the solution quality; 3) several
routing and scheduling neighborhood structures are presented
to balance the exploration and exploitation abilities; 4) well-de-
signed smell and vision search procedures are developed; and
5) an iterated greedy (IG)-based local search is embedded in the
proposed algorithm to further enhance the exploitation ability.
The remainder of this paper is organized as follows.

Section II briefly describes the problem. Next, two heuristics
considering the problem structures are presented in Section III.

934 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

In Section IV, the canonical FOA and IG are presented. Next,
Section V gives the framework of the proposed algorithm.
Section VI illustrates the experimental results and makes com-
parisons to the performances of algorithms from the literature
to demonstrate the superiority of the proposed algorithm. Fi-
nally, Section VII presents the concluding remarks and future
research directions.

II. PROBLEM DESCRIPTIONS

A. Steelmaking Rescheduling Problem

The main processes of a steelmaking production system are
as follows. First, at the steelmaking stage, molten iron from the
iron-making process enters a converter or electric arc furnace
to reduce the undesired impurity contents. Second, at the re-
fining stage, the charge of molten steel is transferred into a re-
fining furnace to further eliminate impurities and add the re-
quired alloy ingredients. Third, at the continuous casting stage,
the liquid steel flows down from the tundish and enters a crys-
tallizer, where it is solidified into slabs. The practical constraint
is that a set of charges must be continuously processed in the
same cast.
To describe the problem, we use the following assumptions.
• In each stage, there are several identical parallel machines,
which can be selected by any charge that flows through the
stage.

• All charges or jobs follow the same processing sequence
from the first stage to the last stage.

• In the last stage, a set of jobs are grouped into a pre-defined
cast to be continuously processed in the same caster, which
should not be interrupted.

• In the last stage, the setup time of a new cast is considered.
• Transfer times between stages are considered.
• Each charge or job should flow through each stage and
select exactly one machine in each stage.

• The disruption data are deterministic.
To bring the algorithm closer to the industrial reality, we con-

sider minimization of the weighted sum of the following real-
istic objectives: 1) , the average sojourn time; 2) , the ear-
liness penalty; 3) , the tardiness penalty; 4) , the cast-break
penalty; and 5) , the system instability penalty. The sojourn
time of a job is the duration between the completion time of the
first stage and the starting time of the last stage. The system in-
stability is the number of changes in machine assignment until
all jobs are completed.
The notations used in this paper are given here.

Indices:

Index of jobs,

Index of machines, .

Index of stages, .

Index of casts, .

Parameters:

Total number of jobs.

Total number of machines.

Total number of stages.

Total number of casts in the last stage.

Starting time of charge at stage in the initial
schedule.

Completion time of charge at stage in the initial
schedule.

Standard processing time of job at stage .

Minimum processing time of job at stage .

Maximum processing time of job at stage .

Set of parallel machines at stage .

Set of jobs, .

. th cast in the
continuous casting stage, where ,
and , and

.

Set of casts, .

Transfer time from stage to stage .

Setup time of cast at the last stage.

Predefined starting time of cast in the upper
planning level.

Starting time of the disruption that occurs at stage
on machine .

Duration of the machine breakdown event on
machine .

Delay length of the processing variation.

Penalty coefficient for the average sojourn time.

Penalty coefficient for earliness.

Penalty coefficient for tardiness.

Penalty coefficient for cast-break.

Penalty coefficient for scheduling instability,
i.e., the number of jobs processed on different
machines in the initial and revised schedules.

Decision variables

Starting time of charge at stage after disruption
in the revised schedule.

Completion time of charge at stage after
disruption in the revised schedule.

Processing time of job at stage after disruption.

Starting time of cast after disruption.

Completion time of cast after disruption.

The aim of this study is to minimize the weighted sum of the
five objectives given as follows:

(1)

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 935

(2)

(3)

(4)

(5)

B. Computational Complexity

Sun and Wang [33] showed that parallel machine earliness
and tardiness scheduling with proportional weights is NP-hard.
Lee verified that parallel machine scheduling problems with
machine availability constraints are NP-hard [34]. Pan et al.
concluded that, as an extension of the HFS, the steelmaking
casting problem with proportional weights for three objectives,
i.e., the sojourn time, earliness and tardiness penalties, is
NP-hard [11]. Because our problem is the steelmaking casting
problem that considers machine breakdown and processing
variation disruptions in which proportional weights of five
objectives are considered, it is a generalization of the problem
considered previously [33], [34], and [11], and is thus also
NP-hard by restriction.

III. SOLUTION TECHNOLOGIES BASED ON PROBLEM-SPECIFIC
CHARACTERISTICS

In this study, we adopt the predictive-reactive approach to
solve the rescheduling problem [13]. In the first step, we gen-
erate a predictive schedule representing the desired behavior of
the shop floor over the time horizon considered. Next, the initial
schedule is modified during execution in response to disruption
events. Any operation in progress at the start of the disruption
must be discarded, and operations starting after the end of the
disruption are rescheduled.
In this section, we first introduce the operation partition

approach that corresponds to the start of the disruption. To
minimize the system penalties, we then introduce two efficient
heuristics: 1) the cast-break minimization heuristic, which
includes a processing-delay strategy and a cast-break erasing
strategy, and 2) the right-shifting heuristic. The cast-break
minimization heuristic is used to minimize the cast-break
penalty, and the right-shifting heuristic is used to minimize the
earliness/tardiness penalty.

A. Operation Partition

In the rescheduling context, the operations should first be di-
vided into different groups according to their starting time. The
detailed groups are as follows.
• : the first group contains all of the operations that have
started their processing before the event time point and are
not affected by the disruption, i.e.,

.

Fig. 1. Operation partition.

• : the second group contains all of the operations that are
affected by the machine breakdown disruption and should
be erased from the current shop, i.e.,

• : the third group contains all of the operations that have
not started their processing when the disruption occurs, i.e.,

.
The following example will help illustrate this complex

HFS rescheduling problem. Consider an instance with eight
charges and three converters in the first stage, three refining
furnaces in the second stage and two casters in the last stage.
Each caster processes one cast in a workday. Each cast contains
four charges. Thus,

. Let
, and . The

Gantt chart for a solution is provided in Fig. 1.
In the Gantt chart, each charge is represented by a rectangle.

The four charges filled with a gray color are those that have
started their work before the given machine breakdown time
point and therefore cannot be rescheduled, whereas the other op-
erations are those that can be rescheduled.Whenmachine break-
down occurs, charge is in process on the breakdownmachine

and should be deleted from the system because of the tem-
perature constraints. Meanwhile, the following operations be-
longing to the charge , operations and , should also
be deleted from the shop. All of the operations are then divided
into three different groups according to the above-described par-
tition mechanism. The first group , and

. The second group and , and the
third group contains all of the other operations which can be
rescheduled in the system.

B. Minimize Cast-Break Via the Processing-Delay Strategy

In a realistic steelmaking casting system, the processing time
of each charge at each stage is not fixed due to the considera-
tion of many unpredictable factors. To begin the scheduling, the
common heuristic method is to set the processing time of each
charge to its initial standard processing time, i.e., for charge
at stage . In a static environment without any disruption, each
charge will be processed according to the standard processing
time. However, in a dynamic environment, we should adjust the

936 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

Fig. 2. Gantt chart after applying the processing-delay heuristic.

processing time of the affected charge to satisfy certain con-
straints. The detailed steps of the proposed processing-delay
heuristic are given here.

Step 1. For each charge in the first divided group, set the
processing time to the standard processing time.

Step 2. For each charge at all stages except the last stage, set
the processing time to the standard processing time.

Step 3. Perform the following substeps.
a. For each cast at the last stage, find whether

there exist any cast-breaks between two
intermediate charges. If not satisfied, stop the
heuristic; otherwise, perform step 3b.

b. For the identified cast-break, if the
former charge has not completed
its work at the disruption time, delay its
processing time as long as possible, i.e., add

to the current
processing time.

The above heuristic can be completed in time . For the
example problem given in Fig. 1, the Gantt chart resulting after
applying the processing-delay heuristic is given in Fig. 2. As
shown in Fig. 2, the processing time of operation at the last
stage has been extended to decrease the cast-break penalty. As-
suming , and ,
the objective value is

C. Minimize Cast-Break Via the Cast-Break Erasing Strategy
To further minimize the cast-break penalty, we propose a

cast-break erasing strategy. Fig. 3 shows a Gantt chart for a
steelmaking problem at the last stage. The first batch has three
casting breaks, which are between operations 2 and 3, 3 and 5,
and 5 and 7. If we move each operation to the right to achieve
a schedule that is as compact as possible, we will decrease the

Fig. 3. Gantt chart for an example with cast-breaks.

penalty value for the cast-break and earliness. However, the av-
erage sojourn time and tardiness will increase because of the
right shift. The proposed cast-break erasing strategy is given
here.
1) Decide the Number of Casting Breaks : Suppose that

there are casting breaks, which divide the current batch into
groups. In each group , there are operations. Let

be the starting time of the current batch and be the due
date of the current batch. Let the right shift length satisfy the
following condition: , where , and
represents the length of the th casting break.
If we right shift the current batch to erase casting breaks,

where is an integer value, the first operation of the current
batch will be shifted to the right by units. We then
obtain the following values.
• Decrease in the casting break penalty: .
• Variation of the earliness/tardiness penalty:

(6)

where and represent the maximum and
minimum values, respectively, of the two given variables.

• Increase in the sojourn time penalty:
, where .

Then, the value of is the integer that yields the maximum
value for the expression

(7)

2) Decide the Right Shift Length: After determining the
value of , the next step is to determine the value of , where
represents the length of the right shift. The formulas are given
here.
• Decrease in the casting break penalty: .
• Variation of the earliness/tardiness penalty:

(8)

• Increase in the sojourn time penalty:

(9)

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 937

Fig. 4. Gantt chart obtained after applying the cast-break erasing strategy.

Then, the value of is the integer that yields the maximum
value for the following formula:

(10)

where
3) Detailed Steps: Given the Gantt chart for the con-

sidered batch, record the length of the casting breaks
and the number of each group of opera-

tions .
Step 1) For each casting break from left to right, one by one,

find the maximum value of , i.e., the maximum
number of casting breaks, that maximizes .

Step 2) If all casting breaks have been processed, let
; otherwise, compute such that the value

of is maximized.
Step 3) The obtained objective value is

(11)

The above heuristic can be completed in time . For the
given example presented in Fig. 2, we compute and as
follows:

and
.

Because only one cast-break exists in the system, we obtain
, and . We then obtain the resulting

fitness as

Fig. 4 gives the Gantt chart obtained after applying the cast-
break erasing strategy. The Gantt chart reveals that the schedule
after applying the cast-break erasing strategy is better than the
previous one.

D. Minimize the Earliness/Tardiness Penalty Via the
Right-Shifting Heuristic
Here, we present a right-shifting strategy considering the dis-

ruption events to minimize the penalty of earliness, which is
given as follows.
Similar to [11], consider a schedule with batches or casts

that can be rescheduled as a whole and earlier casts that start

earlier than the given due date times and can be rescheduled.We
first rank the earlier casts in nondecreasing order of their earli-
ness values to obtain a sequence:
with , where ,
and are the earliness values of casts , and

, respectively, and represents the total operations
in batch .
Because repeated earliness values may exist in the above se-

quence, we then set a vector ,
where , to record the unique earliness values only
once.
Let represent the length of the sequence without

erasing any elements, i.e., . Let denote the
length of the sequence after erasing the first element with an
earliness value equal to . Then, let be the length of the
sequence after erasing the first element with an earliness value
less than or equal to .
Property 1: For the above schedule, the right shift time
that leads to a minimum earliness/tardiness penalty is ,
where should satisfy the following conditions:

.
According to the property, the value of the fitness decrease is

(12)

where , and .
Therefore, the new fitness is computed as

(13)

where is the fitness value before the right-shifting, and
is the resulting fitness value.
For example, given an example steelmaking casting

rescheduling problem, Fig. 5(a) gives the Gantt chart of the last
stage. Among the five batches at the last stage, the first batch
should maintain its starting time, whereas the following four
batches can be rescheduled. Table I gives the earliness value for
each cast. Therefore, we obtain ,
and . Let , and the
initial fitness value . We then compute as follows:

Therefore, , i.e., the entire schedule with the exception
of the operations belonging to the first cast (and) should
be right shifted twice. The first right-shift takes two time units,
whereas the second right-shifting consumes one time unit. The
resulting fitness value is computed as follows:

. Therefore, the final
fitness is .

938 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

Fig. 5. Gantt chart considering the right-shifting heuristic. (a). Gantt chart
without applying the right-shifting heuristic. (b). Gantt chart after applying the
right-shifting heuristic.

TABLE I
EARLINESS VALUE FOR EACH CAST

The above heuristic can be completed in time .
Fig. 5(b) gives the Gantt chart for the schedule obtained after
applying the proposed right-shifting approach.

IV. RELATED ALGORITHMS

A. Canonical FOA
In the canonical FOA, a certain number of fruit flies con-

struct an initial fruit fly population. The initial population then
goes through several generations, in which each fruit fly directs
its search process by using two types of organs, i.e., osphresis
and vision organs. The osphresis organs of fruit flies can help
them find all types of scents floating in the air, whereas the vi-
sion organs help them find the food source after getting close to
the food location. The main steps of the canonical FOA are as
follows [31].

Step 1. Randomly initialize the positions for a swarm of
fruit flies.

Step 2. For each fruit fly, perform the following steps.
Step 3. Change the current position in a random direction

with a random strength.
Step 4. Estimate the distance value between its current

position and the possible food source.
Step 5. Evaluate the fitness value for each fruit fly and

record the best position.
Step 6. Induce the entire swarm of fruit flies to fly to the

best position.
Step 7. If the stopping condition is satisfied, stop the

algorithm; otherwise, return to step 2).

B. Canonical IG
The iterated greedy (IG) algorithm was proposed by Ruiz and

Stützle in 2007 to solve the permutation flowshop scheduling
problem [35]. Since then, IG has been utilized and extended by
an increasing number of researchers, and it has been verified to
be efficient for solving different scheduling problems [35]–[38].
The detailed implementation of the canonical IG is as follows.

Step 1. Randomly generate an initial solution. Set the initial
parameters, such as the destruction length , and
the stop condition.

Step 2. For the current solution , perform the following
steps until the stopping condition is satisfied.

Step 3. Destruction phase. Randomly remove operations
from the current solution , and let be the
resulting partial solution.

Step 4. Construction phase. For each removed operation ,
find the optimal position in the partial solution
and insert into .

Step 5. Check whether the newly generated solution satisfies
the acceptance condition. If it is satisfied, replace
the current solution with the newly generated one;
otherwise, discard it.

V. PROPOSED ALGORITHM

Here, a hybrid FOA algorithm (HFOA) is proposed. Themain
procedures of the proposed HFOA are as follows. A solution is
encoded in the form of two vectors, one of which indicates the
sequence of operations at each stage and the other the choice of
machines at each stage. For each vector, a number of neighbor-
hoods are defined to allow new solutions to be generated from
an existing one. During the decoding process, we apply simple
forward and backward heuristics and the two problem-specific
heuristics discussed in Section-III. At a given iteration of the
HFOA, for each solution in the current population, the algorithm
randomly generates a number of neighboring solutions using the
proposed neighborhoods defined for the scheduling and routing
vectors. The solution value of each of these solutions is com-
puted, and the best of these becomes the new incumbent solu-
tion. Then, the worst solution in the current population is in-
duced by the best fruit fly found thus far. If there is any solution
that has not been updated during the last several iterations, an
IG-based local search is conducted for the best solution found
thus far, and the original solution is replaced with the newly gen-
erated solution.

A. Encoding
In this study, we propose a novel coding mechanism to solve

the steelmaking casting rescheduling problem. Each individual
is represented by two vectors. The first vector, the routing
vector, contains the information of the machine assignment,
whereas the second vector, the scheduling vector, represents
the scheduling sequence for each operation at each stage.
Given the problem shown in Fig. 1, 6 gives the two encoding
vectors. The scheduling vector is illustrated in Fig. 6(a),
whereas Fig. 6(b) shows the routing vector. In the scheduling

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 939

Fig. 6. Encoding representation. (a) Scheduling vector. (b) Routing vector.

vector, three stages contain all of the operations that can be
rescheduled. For example, at the first stage, four operations
can be rescheduled, that is, the other four operations at the first
stage should be scheduled according to the initial schedule.
At the second stage, six charges can be rescheduled. Then,
at the last stage, all of the operations except the cancelled
operation can be adjusted to minimize the objective. Moreover,
the scheduling vector also indicates the scheduling sequence of
the operations that should be rescheduled. For example, at the
last stage, job is to be scheduled before the other three jobs,
i.e., 6–8. In the routing vector, each charge or job is represented
by three elements, which represent the assigned machine at the
three stages, respectively. For example, for the first job ,
the three elements are 2, 4, and 6, which means that machine

is assigned to process job at the first stage, and and
are selected for at the following two stages. It should

be noted that, at the last stage, each charge is selected into the
predefined cast, which should be processed on the determined
machine. In other words, at the last stage, we cannot change the
assigned machine for any operation.

B. Decoding Strategy
In this study, we consider two types of disruptions, i.e., ma-

chine breakdown and processing time variation. For the pro-
cessing time variation disruption, we extend or shorten the pro-
cessing time for the affected operation. For the machine break-
down, we propose a decoding process for a different group of
operations. The first group contains the operations that cannot be
rescheduled. Therefore, after operation partition, we should fix
the starting and completion times for each operation in the first
group which will maintain their current status. For the second
group of operations, considering the temperature constraints in
the realistic production system, the affected operation that is in-
terrupted by a machine breakdown disruption should be deleted
from the shop and subsequent operations belonging to the af-
fected job should be ignored. In addition, in this case, the op-
erations that are assigned to the breakdown machine have to be
scheduled to start just after the restart of the machine.
To adapt to the realistic steelmaking scenario, we introduce

two procedures for the decoding process, i.e., the forward
heuristic and backward heuristic. The forward strategy is to
schedule each charge as soon as possible to minimize several
objectives, such as the maximal completion time and the
tardiness penalty. However, an earlier completion time may
result in a larger average sojourn time and therefore affect

the quality and component of the affected charge because of
the temperature constraint. Therefore, in this section, we also
propose a backward strategy considering minimization of the
average sojourn time. These two strategies are as follows:
1) Forward Heuristic: The forward heuristic is used to de-

cide the starting time of each charge as quickly as possible. For
the rescheduling problem, the disruption durations are known
and we are given the partial Gantt chart for the operations that
cannot be rescheduled, that is, we cannot change the starting
time of these operations. Then, we should reschedule each op-
eration in the third group, i.e., the operations that can be resched-
uled. The detailed steps are given here.

a) Steelmaking stage: Take charge from the sched-
uling vector at the first stage, one by one. Let be the avail-
able time of machine , where , and the ma-
chine assigned to charge in the routing vector. Then, the
starting time of without considering the disruption will be

. If the processing of is in conflict with the ma-
chine breakdown disruption on , set the starting time of
to . The available time of con-
verter should be set to .

b) Refining stage: Take charge from the sched-
uling vector at the second stage, one by one. Let be the
available time of machine , where . The starting
time of without considering any disruption will be

. If the processing of is in con-
flict with the machine breakdown disruption on , then set the
starting time to . The
available time of converter should be set to .

c) Continuous Casting Stage: Take charge from the
scheduling vector at the last stage, one by one. Let be the
cast including charge and be the predetermined machine
for processing cast . Determine the starting time for each
charge without considering the continuity of casting as fol-
lows: , where ,
if is the first charge being processed on machine . Let

after completes its processing task at the
last stage on machine .
The above heuristic can be completed in time . For the

problem given in Section III, the Gantt chart resulting after ap-
plying the forward heuristic is given in Fig. 7. The starting times
of the two casts are 158 and 146, respectively. The objective
value is computed as follows:

2) Backward Heuristic: To satisfy the casting constraints,
we should adjust each charge at the last stage to be processed
without gaps between other charges in the same cast. In addi-
tion, to minimize the average sojourn time, we should right shift
each charge at the preceding stages to achieve a schedule that
is as compact as possible. The detailed steps of the backward
heuristic are given here.

a) Continuous casting stage: At the last stage, for contin-
uous casting constraints, there is no disruption for any machine.
Take charge from the scheduling vector at the last stage one

940 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

Fig. 7. Gantt chart obtained after applying the forward heuristic.

by one. Let be the cast including charge and be the
predetermined machine for processing cast . Determine the
starting time for each charge considering the continuity of
casting as follows:

if charge is the first job in cast
otherwise

(14)
where if is the first charge being processed on ma-
chine , and after completes its processing
tasks at the last stage on machine .
It should be noted that we cannot right shift operations that

have started their work before the disruption event at the last
stage. Therefore, a cast-break will occur if some operations right
shift to be as compact as possible, whereas other operations in
the same cast maintain their starting times. Moreover, if the next
operation of charge in the batch is cancelled, charge
should be right shifted to satisfy the continuous casting con-
straint. However, too much right shifting will also increase the
tardiness. Therefore, during the backward procedure, we only
maintain the starting time of charge if its following op-
eration in the same batch is canceled. To erase this type of
cast-break, we use the cast-break erasing heuristic discussed in
Section III.

b) Refining stage: After adjusting the starting time at the
casting stage, we should determine the starting time of charge

at the refining stage without changing the assigned ma-
chine. Take charge from the scheduling vector at the second
stage one by one, from last to first. The stating time of charge

is set to without con-
sidering the machine breakdown event on machine . If charge

conflicts with the machine breakdown event, we obtain the
updated starting time of charge as

.
c) Steelmaking stage: Each charge will be resched-

uled after adjusting the starting time at the refining stage. Take
charge from the scheduling vector at the first stage one by
one, from last to first. If there is no conflict between and the
machine breakdown event of the assigned machine, the starting
time of charge is set to ; other-
wise, the starting time of charge is set to

.

The above heuristic can be completed in time . The
Gantt chart resulting after applying the backward heuristic is
given in Fig. 1, and the new objective value is

C. Neighborhood Structures

Considering the problem characteristics of the SCC
rescheduling problem, we propose two different neighborhood
structure for machine assignment and operation scheduling,
namely routing and scheduling neighborhood structure, respec-
tively.
1) Routing Neighborhood Structure: The aim of the routing

neighborhood structure is to give a different machine assign-
ment to the current individual. The mutation neighborhood is
commonly used in the current literature to change another avail-
able machine for a randomly selected operation [30], [39].
To consider both the exploitation and the exploration capabil-

ities of the proposed algorithm, we present an efficient routing
neighborhood structure that combines the mutation neighbor-
hood and a developed crossover neighborhood.
Let denote the population that contains the solutions with

the best fitness value. is initiated as empty. After each gener-
ation, the best solution found thus far will update as fol-
lows: 1) if is better than the solutions in , empty and
insert into and 2) if the fitness value of is the same as
the solutions in , then check whether contains an objective
value that is different from those of the solutions in . If both
of the above two conditions are satisfied, insert into . For
example, given a solution with the fitness value
and the objectives values ,
and , we denote .
If the current

, we should insert into .
After performing the above-mentioned steps, will contain

the best solutions with different objective values for the consid-
ered five objectives. Therefore, both the exploitation and ex-
ploration abilities will be maintained. With population , the
detailed steps are as follows.

Step 1. Set the two parameters and , where
represents the probability to learn from the best
solution found thus far, and is the maximum
learning strength.

Step 2. Evenly divide the entire evolution stage into
parts.

Step 3. During the evolution, perform the following steps.
a) If the evolution time follows into the th part,

then set the current learning strength to
.

b) For each solution , perform the mutation
neighborhood.

c) For each solution , generate a random
number . If , perform step 3d);
otherwise, perform step 3e).

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 941

d) Perform the following steps times:
i. Randomly select one stage except the
last stage.

ii. At the selected stage, randomly select
one schedulable operation.

iii. Randomly select a best solution in
.

iv. Set the machine assignment the same as
that in for the selected operation in .

e) Go back to step 3).

2) Scheduling Neighborhood Structure: To solve the hybrid
flowshop scheduling problem, neighborhood structures, such as
insertion, swap, pairwise exchange, and multi-swap, are com-
monly used in the literature. For the static scheduling problem,
Pan et al. verified that the multi-swap neighborhood can be
evaluated more efficiently than the other three neighborhood
structures [11]. The second best is the insertion neighborhood
structure. However, in the rescheduling problem, one of the ob-
jectives is to minimize the system instability. Therefore, the
above-discussed neighborhood structures should play different
roles in the rescheduling problem.
In this study, considering the problem structure and the bal-

ance of the exploration and exploitation abilities, we combine
the two neighborhood structures, i.e., the multi-swap and inser-
tion neighborhoods, and present a random selection approach.
In other words, in each generation, we randomly select one of
the two scheduling neighborhood structures to generate neigh-
boring solutions.

D. Population Initialization

In the SCC rescheduling problem, each solution has many
evaluation criteria, and a balance should be created between the
solution quality and the system stability. Therefore, to generate
a population with a high level of solution quality and diversity,
we propose a very simple population initialization heuristic,
which is given below.

Step 1. Divide each charge into different groups at the
disruption time point.

Step 2. Let counter , and perform the following
steps until .

Step 3. Generate a solution based on the given initial
schedule in a random manner and evaluate it. If the
newly generated solution is not the same as any
individual in the current population, insert it into
the population and let ; otherwise,
discard it.

Step 4. Return to step 3.

E. Smell-Based Search Procedure

In FOA, each fruit fly performs exploitation tasks by utilizing
a smell-based search procedure. Therefore, the efficiency of the
smell-based search procedure is crucial for FOA. In this study,
the smell-based search procedure for the rescheduling problem
is implemented as follows.

Step 1. Set parameter SN, which is the size of the
neighboring space for each fruit fly to be exploited.
In other words, the SN value decides the search
strength for each fruit fly.

Step 2. For each fruit fly , perform the following steps
SN times.

Step 3. Generate a neighboring fruit fly around the given
individual by applying the proposed routing and
scheduling neighborhood structures, respectively.

Step 4. Store the newly generated neighboring individual in
a new vector named .

F. Vision -Based Search Procedure

To enhance the search ability of the entire swarm, in canon-
ical FOA, the vision-based search procedure is utilized to in-
duce the entire population to a better search space. To consider
the balance of the exploitation and exploration abilities, we de-
velop an improved vision-based search procedure, which can
both improve the performance of the current population and re-
tain the diversity of the entire swarm. The detailed steps are as
follows.

Step 1. For each fruit fly , perform steps 2 and 3.
Step 2. Evaluate all of the neighboring solutions in the

neighboring solution set .
Step 3. If the best neighboring solution with the minimum

fitness value is better than the current
individual, replace the latter with the former.

Step 4. For the entire population, perform steps 5–7.
Step 5. Sort the entire population in non-decreasing order

according to their fitness values.
Step 6. For the best fruit fly found thus far, perform the

insertion neighborhood several times to generate a
new fruit fly named .

Step 7. Find the worst fruit fly in the current population and
replace it with .

G. IG-Based Local Search Procedure

In this study, to enhance the search ability of the algorithm,
we embed an IG-based local search in the proposed algorithm.
The detailed implementation of the IG-based local search is as
follows.

Step 1. Set parameter LEN, which is the destruction length
of the IG-based local search.

Step 2. For the given fruit fly , perform the following
steps.

Step 3. In the destruction phase, randomly select LEN
operations and delete them from the scheduling
vector of . Next, store the deleted operations in a
vector denoted .

Step 4. In the construction phase, fetch each operation in
vector one by one, and find the optimal position
for the selected operation until is empty.

942 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

Step 5. Evaluate the newly generated neighboring
individual, and update the given solution if the
former is better than the latter. Moreover, update
the best solution found thus far.

H. Exploration Procedure

To avoid becoming stuck in a local optimum, we develop an
exploration procedure in the proposed HFOA, which is given
below.

Step 1. For each fruit fly , record the update iteration
number (UIN).

Step 2. In each generation, set UIN for each fruit fly as
follows: If the fruit fly is updated by a newly
generated neighboring individual, set UIN to zero;
otherwise, increase it.

Step 3. Sort the entire population in non-increasing order
according to its UIN.

Step 4. Find the fruit fly with a UIN greater than , and
denote it . If more than one fruit fly satisfies that
condition, randomly select one.

Step 5. For the best fruit fly found thus far, perform the
IG-based local search discussed above. Replace
with the newly generated fruit fly.

I. Flowchart of the Proposed Algorithm

The detailed flowchart of the proposed HFOA algorithm is
provided in Fig. 8.

VI. EXPERIMENTAL EVALUATION

This section discusses the computational experiments used to
evaluate the performance of the proposed algorithm. Our algo-
rithm was implemented in C++ on an Intel Core 7 3.4-GHz
PC with 16 GB of memory. The algorithms compared include
two previously developed algorithms, i.e., DABC [11]and PIDE
[30]. It should be noted that PIDE is a very recently published
and efficient algorithm that is used for solving the steelmaking
casting rescheduling problem, and DABC is also efficient for
solving the steelmaking casting problem. To make a fair com-
parison on the same test instance, we code the above algorithms.
All algorithms use the same maximum elapsed CPU time limit
of 100 s as a termination criterion. The best results of the
experiments for the 120 randomly generated problems from 30
independent runs were collected for performance comparisons.
The Taguchi method of DOE [41] is utilized to test the influ-
ence of the key parameters on the performance of the proposed
algorithm.
The performance measure is the relative percentage increase

(RPI), which is calculated as follows:

(15)

where is the best solution found by all of the compared al-
gorithms, whereas is the best solution generated by a given
algorithm.

Fig. 8. Flowchart of the proposed algorithm.

A. Experimental Instances

In this study, we generate 15 problem instances based on the
practical situations of the iron and steel production in Baosteel
complex, the largest and most advanced iron and steel enterprise
in China. The technological constraints are given as follows.

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 943

TABLE II
COMBINATIONS OF DIFFERENT EVENTS

• There are three converters, five refining furnaces, and four
continuous casters in the shop. In each workday, a contin-
uous caster can process three or four casts. Each cast gen-
erally contains 8–12 charges or jobs. Therefore, in each
workday, we consider 12–16 casts and a total of approx-
imately 120 charges in the scheduling. For each charge
or job, the processing time is randomly generated in the
ranges of [38], [40], [36], [50], and [38], [44] for the three
stages considered, respectively;

• For each machine, the release time is not considered as a
technical capability;

• The transfer times for each set of two consecutive stages
are in the range of [10]–[15];

• The setup time for each cast is set to 100;
• The practical minimum and maximum processing time of
job at stage , i.e., and are set to and

, respectively;
• The predefined starting time of the first cast on each caster
in the continuous stage can be estimated by the sum of the
processing time and transfer time of each charge related to
the cast;

• Two levels of event time points: (1) T1, at the first stage,
randomly select a machine , and randomly generate a
machine breakdown disruption at a time point equal to 30%
of themachine completion time on ; (2) T2, at the penul-
timate stage, randomly select a machine , and randomly
generate a machine breakdown disruption at a time point
equal to 70% of the machine completion time on ;

• Three levels of machine breakdown durations: 0%, 3%,
and 6% of the maximal completion time of the breakdown
machine;

• Three levels of processing variations: 0%, 10%, and 20%
of the standard processing time of the affected charge.

Therefore, we obtain a total of 120 test instances with eight
different combinations of disruptions for realistic steelmaking
rescheduling problems, which are given in Table II. In Table II,
the columns labeled “T”, “M” and “V” represent the levels of the
event time point, machine breakdown duration, and processing
variation, respectively.

B. Experimental Parameters

Tomake a fair parameter tuning, we randomly generate a sep-
arate and independent data set, with 120 instances ranging from

TABLE III
COMBINATIONS OF KEY PARAMETER VALUES

Fig. 9. Factor level trend of the first three key parameters.

20 jobs to 120 jobs. According to [40] and our preliminary ex-
periments, the number of iterations during which the solution
does not improve is also set to 20. The remaining five pa-
rameters are the population size (PS), the size of the neighbor-
hood in the smell-based search process (SN) for the HFOA pro-
cedure, the probability to learn from the best solution , the
maximum learning strength , and the destruction length
(LEN) for the IG-based local search procedure. According to
our preliminary experiments, the levels of the five parameters
are presented in Table III, where represents the number of
charges in the system. The Taguchi method of DOE [41] is uti-
lized to test the influence of these five parameters on the perfor-
mance of the proposed algorithm.
For the first three parameters, an orthogonal array is

performed. For each parameter combination, the proposed algo-
rithm is run 30 times independently, and the average RPI value
obtained by the proposed algorithm is then collected as the re-
sponse variable (RV). Fig. 9 reports the factor level trend of the
three parameters.
It can be observed from Fig. 9 that the proposed algorithm

exhibits better performance under the three parameters with the
following levels: PS with level 2, SN with level 3, and with
level 4. Fig. 9 also shows that parameter PS is more critical
than the other two parameters in the proposed algorithm. A large
value of PS means that more computational resources are con-
sumed in the exploration procedure and that the algorithm will

944 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

lose its exploitation ability. An overly small value of PS indi-
cates a loss of the exploration ability of the algorithm. There-
fore, to balance the exploration and exploitation abilities, a suit-
able value for the key parameter PS is set to 30 in the proposed
HFOA. According to the above-described analysis, the suitable
values for the three considered parameters, namely PS, SN and
, are set to 30, and 0.7, respectively.
Similar experiments are also carried out to optimize the pa-

rameters for other parameters that are used for comparison pur-
poses. Their desirable parameter settings based on the experi-
mental results are the following: and .
The Taguchi method of DOE is also utilized to perform exten-

sive experiments to tune the parameters of the compared algo-
rithms. According to our preliminary experiments, the parame-
ters for the compared algorithms are as follows: 1) for the canon-
ical GA in Section VI-F, the population size is set to 20,
0.05 for the mutation probability , and 0.3 for the crossover
probability ; 2) for the canonical TS in Section VI-F, the
tabu list length and the tabu tenure are both set to ,
where represents the total number of machines in the system;
50 and 10 for and , respectively, which are the number
of iterations of TS used in the intensification and diversification
phase, respectively; 3) for DABC, the population size (PS) is
set to 50, the number of employed bees or onlookers is equal to
PS, and the number of trials that a food source is assumed to be
abandoned (limit) is set to 100; and 4) for PIDE, the population
size is set to 50, 0.95 for the mutation probability ,
and 0.5 for the crossover probability .

C. Effectiveness of the Proposed Problem-Specific Heuristics

Here, to examine the effectiveness of the proposed two
heuristics, i.e., the cast-break erasing and right-shifting ap-
proaches, we make detailed comparisons of the presented
heuristics in Table IV, where H-I represents the HFOA without
any problem-specific heuristics discussed above, H-II the
HFOA with the right-shifting heuristic, H-III the HFOA with
the cast-break erasing heuristic, and H-IV the HFOA with both
proposed heuristics. Each combination is independently run on
the same PC mentioned above with the 120 test instances.
It can be observed from Table IV that: 1) H-IV obtained 14

improved values out of the given 15 instances, whereas H-II
and H-III can obtain only one improved value each; 2) H-I is
the worst one among the compared algorithms and presents ap-
proximately 78-fold greater performance than H-IV; 3) the last
row in the table shows that H-IV performs the best and exhibits
approximately 14-fold lower performance than the second-best
algorithm H-III; and 4) in a nutshell, we can obtain better results
by concurrently applying the two proposed heuristics.
We also collect the CPU times consumed by each heuristic

to find the results listed in the comparison table. The average
CPU times for H-I, H-II, H-III and H-IV are 34.97, 40.12, 46.43,
50.64 s, respectively. From the CPU time comparisons, we can
see that the differences in the computational time is not very
obvious between H-III and H-IV, but H-IV obtains an average
RPI value which is approximately 150-fold lower than H-III.
The comparisons in the CPU time verify the efficiency of the
combination of the proposed problem-specific heuristics.

TABLE IV
COMPARISONS OF THE RPI VALUES FOR PROBLEM-SPECIFIC HEURISTICS

To further investigate the primary effectiveness of the two
heuristics, a multiple comparisons test known as the Friedman
test [42], [43] is performed. The Friedman test is a non-para-
metric statistical test that can be used to identify whether there
are significant differences between different algorithms. The
-value obtained by the Friedman test provides information
about whether a statistical hypothesis test is significant or not.
The smaller the -value is, the stronger the evidence against
H0 [43]. That is, a smaller -value means that there is a more
significant difference between the compared algorithms.
After applying the Friedman test, we obtained a -value of

2.2849e-08, which is very near zero and demonstrates that the
results of the different algorithms are significantly different.
However, the main drawback of the Friedman test is that it only
tells whether there are significant differences over the entire al-
gorithms compared, but it cannot determine the results of a pair-
wise comparison. In this study, we also apply the Holmmultiple
comparison test [44] as a post hoc procedure for the pairwise
comparisons. Fig. 10(a) shows the multiple comparison results,
which demonstrates that H-IV is significantly different from the
other three compared heuristics.
In summary, H-IV is effective for the problem under consid-

eration, and it is necessary to take advantage of the problem-spe-
cific characteristics for developing a solution technology for the
rescheduling problem.

D. Effectiveness of the Proposed Neighboring Structures
Here, to assess the efficiency of the proposed neighborhood

structures, we perform three independent experiments for com-
parisons of the routing and scheduling neighborhood structures
discussed in Section V.
1) Comparisons of Different Scheduling Neighborhood

Structures: To check the efficiency of the proposed sched-
uling neighborhood structures, we code and test three types of

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 945

Fig. 10. Multi-comparison results.

scheduling neighborhood structures for the given considered
problems, i.e., multi-swap, insertion and our proposed method.
For each compared algorithm, 30 independent runs are per-
formed for each instance. The experimental results show that
our proposed method exhibits better performance than the other
two compared neighborhood structures.
The advantages of the proposed scheduling neighborhood

structures are as follows. First, by using the multi-swap ap-
proach, the algorithm can better perform the exploitation task.
Second, by using the insertion method, the algorithm can better
escape from local optima.
2) Comparisons of Different Routing Neighborhood Struc-

tures: To assess the efficiency of the proposed routing neigh-
borhood structures, we also code and evaluate the mutation and
single-point crossover (SPC) methods.
It can be concluded from the experimental results that our

proposed method exhibits better performance than the other two
compared neighborhood structures. The main reasons for this
finding are the following: 1) during the earlier evolution stages,
the proposed routing neighborhood achieves more learning
from the best solution, which enhances the convergence ability
of the proposed algorithm; 2) during the later evolution stages,
the learning strength will decrease, which may aid the algorithm
avoid becoming stuck in local optima; and 3) the application
of the mutation neighborhood makes the proposed heuristic
generate different solutions.
3) Combination of Different Neighboring Structures:

Table V gives the comparison results of the RPI values for com-
binations of different neighboring approaches. The different
combinations are given here:
• NH-I, the neighboring approach that only contains the pro-
posed routing neighborhood structure;

TABLE V
COMPARISONS OF THE RPI VALUES FOR NEIGHBORHOOD COMBINATIONS

• NH-II, the neighboring approach that only considers the
scheduling neighborhood;

• NH-III, the neighboring approach that considers both the
routing and scheduling neighborhoods.

The CPU times consumed by NH-I, NH-II, and NH-III are
15.31, 42.91, and 50.64 s, respectively. It can be observed from
Table V that: 1) NH-II leads to greater benefit than NH-I, the
main reason is that a new solution is generated by changing

946 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

TABLE VI
COMPARISONS OF THE RPI VALUES FOR THE ENHANCED STRATEGIES

another available machine for a selected operation in NH-I,
whereas NH-II changes the scheduling order to generate a
new solution, which makes NH-II have a wider searching
space than NH-I, and 2) NH-III exhibits the best performance
and enables both the routing and scheduling neighborhoods.
Therefore, in this study, by applying the NH-III method to
combine the routing and scheduling neighborhood structures,
our proposed algorithm may allow the identification of more
improved results after the disruption.
The resulting -value of the Friedman test is 3.0590e-07,

which indicates that there are significant differences among
the three compared algorithms. As shown in Fig. 10(b) the
neighboring approach that considers both the routing and
scheduling neighborhoods is significantly better than the other
two approaches.

E. Effectiveness of the Enhanced Strategies in HFOA

To investigate the effectiveness of the enhanced strategies,
we implement the HFOA algorithm presented in Section V and
the HFOA algorithm without the enhanced IG-based local
search strategies (for short). The parameters for
the two compared algorithms are set to the same values as
in Section VI-B. The only difference between HFOA and

is that the HFOA algorithm embeds the IG-based
local search strategy during the exploration procedure. The two
algorithms are tested on the same PC and with the same test
instances. After 30 independent runs, the average RPI results
for each instance with different event types are collected for
comparison, which is given in Table VI.
It can be observed from Table VI that: 1) to solve the 15 given

instances, the proposed HFOA with the IG-based local search
algorithm yielded 13 improved values, whereas only

TABLE VII
COMPARISONS OF THE RPI VALUES FOR GA, TS, AND HFOA

found improved values for Cases 8 and 15; and 2) HFOA ob-
tained an average RPI value of 0.07, which is approximately
three-fold lower than the result obtained with .
The resulting -value of the Friedman test is 0.0045, which

indicates that there are significant differences between the two
compared algorithms.

F. Comparisons With the Canonical Algorithms

To make a fair comparison between the proposed algorithm
and the other meta-heuristics, such as GA and TS, we code GA
and TS algorithms. Table VII gives the comparison results for
the three compared algorithms.
For GA and TS algorithms, we use the same encoding and

decoding approaches as in the HFOA algorithm. For GA, we
adopt the single-point crossover, swap mutation operators as
in [45]. For TS, we adopt the swap and mutation neighbor-
hoods as in [46]. The two problem-specific heuristics discussed
in Section III are also embedded in the two algorithms.
It can be concluded from Table VII that our proposed method

shows better performance than the canonical GA and TS algo-
rithms. Compared with GA and TS algorithms, the main ad-
vantages of the proposed HFOA are as follows: 1) the pro-
posed routing and scheduling neighborhood structures enhance
the exploitation and exploration capabilities; 2) the proposed
smell-search and vision-search procedures increase the search
ability; 3) the proposed exploration procedure enhances the ex-
ploration ability; and 4) the proposed IG-based local search pro-
cedure further enhances the exploitation ability.
The resulting -value of the Friedman test is 8.5749e-06,

which indicates that there are significant differences between
the three compared algorithms. The average CPU times con-
sumed by GA, TS, and HFOA are 82.42, 79.77, and 50.64 s, re-
spectively. It can be concluded from the comparison results and

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 947

TABLE VIII
COMPARISONS OF THE RPI VALUES WITH A CPU TIME OF 30 S

Fig. 10(c) that the proposed HFOA algorithm is significantly
better than the canonical GA and TS algorithms.

G. Comparisons with the Presented Efficient Algorithms

To make a fair comparison between the proposed algorithm
and two other recently published algorithms for steelmaking
casting problems, i.e., DABC and PIDE, we code the above-de-
scribed two algorithms used for comparison purposes in solving
our SCC rescheduling problems and run them on the same PC
with the same stop conditions. For each compared algorithm,
the decoding strategy with forward and backward heuristics as
discussed in Section V-B is embedded. To make a fair and ex-
tensive comparison, all of the algorithms adopt the same pop-
ulation initialization method. The two problem-specific heuris-
tics discussed in Section III are not embedded in DABC and
PIDE. Each compared algorithm is run 30 independent times
for each given instance. All algorithms adopt the same max-
imum elapsed CPU time limit of and s as a
termination criterion. This criterion is practical in realistic pro-
duction systems. The comparison results of RPI values at
and s for the three compared algorithms are reported in
Tables VIII and IX, respectively. In the two tables, we use the
best solution found by any algorithm at s as the refer-
ence value when computing the RPI values.
It can be observed from Table VIII that: 1) at the time limit

of , the proposed HFOA yielded 13 improved values
out of the 15 given instances, whereas the second-best algo-
rithm PIDE, obtained two improved solutions; 2) on average,
the proposed HFOA obtained an RPI value of 1.94, which is al-
most sixfold less than that of the PIDE algorithm, which was the
second-best performer, with an overall average RPI of 11.33;
and 3) the comparison results show the efficiency and robust-
ness of the proposed HFOA within a short computational time.

TABLE IX
COMPARISONS OF THE RPI VALUES WITH A CPU TIME OF 100 S

Table IX gives the comparison results at 100 s. The av-
erage CPU times consumed by DABC, PIDE, and HFOA are
37.10, 75.83, and 50.64 s, respectively. It can be observed from
Table IX that: 1) the proposed HFOA obtained 14 improved
values out of the 15 given instances, indicating that it is better
than the other algorithms; 2) from the comparison of the average
performance presented in the last row, we can see that the pro-
posed HFOA obtained an RPI value of 0.09, which is almost
110-fold smaller than that of the second-best algorithm, PIDE;
and 3) the comparison result with relatively longer CPU times
further verifies the efficiency of the proposed HFOA.
To assess whether the observed differences from the above

two tables are indeed significantly different, we carry out the
Friedman test and the Holm multiple comparison test as a
post hoc procedure for the pairwise comparison. The resulting
-values for Tables VIII and IX are 1.2792e-05 and 2.1146e-06,
respectively. Fig. 10(d) presents the pairwise comparison
results after applying the Holm multiple comparison tests for
the comparison of the results presented in Table IX. It can be
concluded from Fig. 10(d) that the proposed HFOA algorithm
is significantly better than DABC and PIDE.
Compared with PIDE, the main advantages of HFOA are the

following: 1) the two problem-specific heuristics discussed in
Section III improve the solution quality; 2) the smell and vi-
sion search processes enhance the exploitation ability; 3) the ex-
ploration procedure improves the exploration ability; and 4) the
IG-based local search further enhances the exploitation ability.
The same advantages of HFOA are also found in the compar-
ison with DABC. Another advantage of HFOA compared with
DABC is that the proposed encoding and decoding mechanism
affords HFOA the ability to search more promising locations
than DABC.

948 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

Fig. 11. Comparison of convergence curves for different scale instances: (a) 20-job instances; (b) 60-job instances; (c) 80-job instances; (d) 100-job instances;
(e) 120-job instances.

To verify the convergence ability of the compared algorithms,
we randomly select five instances with different scales. The con-
vergence curves for the instances with 20, 60, 80, 100, and 120
jobs are reported in Fig. 11(a)–(e), respectively. The conver-
gence curves for different instances indicate that the proposed
HFOA algorithm shows better convergence performance than
PIDE and DABC.

VII. CONCLUSION

In this study, a hybrid algorithm combining FOA and IG
is proposed for solving the realistic steelmaking rescheduling
problem with flexible processing time constraints. The char-
acteristics of the proposed HFOA which make it suitable for
this specific rescheduling problem are as follows: 1) a novel
encoding mechanism is presented; 2) two decoding heuristics
that consider the problem characteristics are embedded; 3) to
enhance the exploitation and exploration capabilities of the
proposed algorithm, several effective routing and scheduling
neighborhood structures are developed; and 4) an IG-based
local search procedure is utilized to enhance the exploitation
ability.
The proposed algorithm is tested on steelmaking

rescheduling problems. Experimental results and statistical
analysis show the robustness and efficiency of the proposed
algorithm. The two presented problem-specific decoding
heuristics improved the performance of the HFOA algorithm
by a significant margin. The HFOA algorithm also performed
markedly better than the other well-known algorithms
presented. Future work includes the application of the proposed
algorithm to solving the hybrid flowshop rescheduling problem
with other types of disruptions.

REFERENCES

[1] L. X. Tang, J. Y. Liu, A.Y. Rong, and Z. H.Yang, “Amathematical pro-
gramming model for scheduling steelmaking-continuous casting pro-
duction,” Eur. J. Oper. Res., vol. 120, no. 2, pp. 423–435, 2000.

[2] J. M. Pinto and I. E. Grossmann, “A continuous time mixed integer
linear programming model for short term scheduling of multistage
batch plants,” Ind. Eng. Chem. Res., vol. 34, no. 9, pp. 3037–3051,
1995.

[3] L. X. Tang, J. Liu, A. Rong, and Z. Yang, “A review of planning and
scheduling systems and methods for integrated steel production,” Eur.
J. Oper. Res., vol. 133, no. 1, pp. 1–20, 2001.

[4] L. Tang, P. B. Luh, J. Liu, and L. Fang, “Steel-making process sched-
uling using Lagrangian relaxation,” Int. J. Prod. Res., vol. 40, no. 1,
pp. 55–70, 2002.

[5] H. Xuan and L. X. Tang, “Scheduling a hybrid flowshop with batch
production at the last stage,” Comp. Oper. Res., vol. 34, no. 9, pp.
2718–2733, 2007.

[6] V. Kumar, S. Kumar, M. K. Tiwari, and F. T. S. Chan, “Auction-
based approach to resolve the scheduling problem in the steel making
process,” Int. J. Prod. Res., vol. 44, no. 8, pp. 1503–1522, 2006.

[7] A. Atighehchian, M. Bijari, and H. Tarkesh, “A novel hybrid algorithm
for scheduling steel-making continuous casting production,” Comp.
Oper. Res., vol. 36, no. 8, pp. 250–2461, 2009.

[8] H.Missbauer,W. Hauber, andW. Stadler, “A scheduling system for the
steelmaking-continuous casting process. A case study from the steel-
making industry,” Int. J. Prod. Res., vol. 47, no. 15, pp. 4147–4172,
2009.

[9] Y. Y. Tan and S. X. Liu, “Models and optimisation approaches
for scheduling steelmaking-refining-continuous casting production
under variable electricity price,” Int. J. Prod. Res., vol. 52, no. 4, pp.
1032–1049, 2014.

[10] L. X. Tang, J. X. Luo, and J. Y. Liu, “Modelling and a tabu search
solution for the slab reallocation problem in the steel industry,” Int. J.
Prod. Res., vol. 51, no. 14, pp. 4405–4420, 2013.

[11] Q. K. Pan, L. Wang, K. Mao, J. H. Zhao, and M. Zhang, “An effec-
tive artificial bee colony algorithm for a real-world hybrid flowshop
problem in steelmaking process,” IEEE Trans. Autom. Sci. Eng., vol.
10, no. 2, pp. 307–322, 2013.

[12] K. Mao, Q. K. Pan, X. Pang, and T. Chai, “A novel Lagrangian relax-
ation approach for a hybrid flowshop scheduling problem in the steel-
making-continuous casting process,” Eur. J. Oper. Res., vol. 236, no.
1, pp. 51–60, 2014.

LI et al.: HFOA FOR THE REALISTIC HYBRID FLOWSHOP RESCHEDULING PROBLEM IN STEELMAKING SYSTEMS 949

[13] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy, “Exe-
cuting production schedules in the face of uncertainties: a review and
some future directions,” Eur. J. Oper. Res., vol. 161, no. 1, pp. 86–110,
2005.

[14] G. E. Vieira, J.W. Herrmann, and E. Lin, “Reschedulingmanufacturing
systems, a framework of strategies, policies, and methods,” J. Sched-
uling., vol. 6, no. 1, pp. 39–62, 2003.

[15] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in man-
ufacturing systems,” J. Scheduling., vol. 12, no. 4, pp. 417–431, 2009.

[16] A. Allahverdi and J. Mittenthal, “Scheduling on a two-machine flow-
shop subject to random breakdowns with a makespan objective func-
tion,” Eur. J. Oper. Res., vol. 81, no. 2, pp. 376–387, 1995.

[17] D. Rahmani and M. Heydari, “Robust and stable flow shop scheduling
with unexpected arrivals of new jobs and uncertain processing times,”
J. Manu. Sys., vol. 33, no. 1, pp. 84–92, 2014.

[18] L. Tang,W. Liu, and J. Liu, “A neural network model and algorithm for
the hybrid flow shop scheduling problem in a dynamic environment,”
J. Intell. Manu., vol. 16, no. 3, pp. 361–370, 2005.

[19] D. Petrovic and A. Duenas, “A fuzzy logic based production sched-
uling/rescheduling in the presence of uncertain disruptions,” Fuzzy.
Set. Systems., vol. 157, no. 16, pp. 2273–2285, 2006.

[20] M. Zandieh and M. Gholami, “An immune algorithm for scheduling a
hybrid flow shop with sequence-dependent setup times and machines
with random breakdowns,” Int. J. Prod. Res., vol. 47, no. 24, pp.
6999–7027, 2009.

[21] S. X. Yang and C. H. Li, “A clustering particle swarm optimizer for
locating and trackingmultiple optima in dynamic environments,” IEEE
Trans. Evol. Comput., vol. 14, no. 6, pp. 959–974, 2010.

[22] K. Wang and S. H. Choi, “A decomposition-based approach to flexible
flow shop scheduling under machine breakdown,” Int. J. Prod. Res.,
vol. 50, no. 1, pp. 215–234, 2012.

[23] H. Xuan and B. Li, “Scheduling dynamic hybrid flowshop with serial
batching machines,” J. Oper. Res. Soc., vol. 64, no. 6, pp. 825–832,
2013.

[24] D. Rahmani, M. Heydari, A. Makui, and M. Zandieh, “A new ap-
proach to reducing the effects of stochastic disruptions in flexible flow
shop problems with stability and nervousness,” Int. J. Manag. Sci. Eng.
Manag., vol. 8, no. 3, pp. 173–178, 2013.

[25] K. Katragjini, E. Vallada, and R. Ruiz, “Flow shop rescheduling under
different types of disruption,” Int. J. Prod. Res., vol. 51, no. 3, pp.
780–797, 2013.

[26] P. I. Cowling, D. Ouelhadj, and S. Petrovic, “Amulti-agent architecture
for dynamic scheduling of steel hot rolling,” J. Intell. Manu., vol. 14,
no. 5, pp. 457–470, 2003.

[27] P. I. Cowling, D. Ouelhadj, and S. Petrovic, “Dynamic scheduling of
steel casting andmilling using multi-agents,” Prod. Plan. Control., vol.
15, no. 2, pp. 178–188, 2004.

[28] R. Roy, B. A. Adesola, and S. Thornton, “Development of a knowl-
edge model for managing schedule disturbance in steel-making,” Int.
J. Prod. Res., vol. 42, no. 18, pp. 3975–3994, 2004.

[29] S. P. Yu and Q. K. Pan, “A rescheduling method for operation time
delay disturbance in steelmaking and continuous casting production
process,” J. Iron. Steel. Res. Int., vol. 19, no. 12, pp. 33–41, 2012.

[30] L. Tang, Y. Zhao, and J. Liu, “An improved differential evolution al-
gorithm for practical dynamic scheduling in steelmaking-continuous
casting production,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp.
209–225, 2014.

[31] W. T. Pan, “A new fruit fly optimization algorithm: Taking the financial
distress model as an example,” Knowl-Based. Syst., vol. 26, pp. 69–74,
2012.

[32] L. Wang, X. L. Zheng, and S. Y. Wang, “A novel binary fruit fly
optimization algorithm for solving the multidimensional knapsack
problem,” Knowl-Based. Syst., vol. 48, pp. 17–23, 2013.

[33] H. Sun and G. Wang, “Parallel machine earliness and tardiness sched-
uling with proportional weights,” Comput. Oper. Res., vol. 30, no. 5,
pp. 801–808, 2003.

[34] C. Y. Lee, “Machine scheduling with an availability constraint,” J.
Global Opt., vol. 9, no. 3–4, pp. 395–416, 1996.

[35] R. Ruiz and T. Stützle, “A simple and effective iterated greedy algo-
rithm for the permutation flowshop scheduling problem,” Eur. J. Oper.
Res., vol. 177, no. 3, pp. 2033–2049, 2007.

[36] Q. K. Pan and R. Ruiz, “An effective iterated greedy algorithm for the
mixed no-idle permutation flowshop scheduling problem,” OMEGA-
Int. J. Manage. Sci., vol. 44, no. 1, pp. 41–50, 2014.

[37] C. Garcı́a-Martı́nez, F. J. Rodriguez, and M. Lozano, “Tabu-enhanced
iterated greedy algorithm: A case study in the quadratic multiple knap-
sack problem,” Eur. J. Oper. Res., vol. 232, no. 3, pp. 454–463, 2014.

[38] M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and O. Buyukdagli, “A
variable iterated greedy algorithm with differential evolution for the
no-idle permutation flowshop scheduling problem,” Comp. Oper. Res.,
vol. 40, no. 7, pp. 1729–1743, 2013.

[39] J. Q. Li and Q. K. Pan, “Chemical-reaction optimization for flexible
job-shop scheduling problems with maintenance activity,” Appl. Soft.
Comput., vol. 12, no. 9, pp. 2896–2912, 2012.

[40] Q. K. Pan, M. Tasgetiren, P. N. Suganthan, and T. J. Chua, “A discrete
artificial bee colony algorithm for the lot-streaming flow shop sched-
uling problem,” Inform. Sci., vol. 181, no. 12, pp. 2455–2468, 2011.

[41] D. C. Montgomery, Design and Analysis of Experiments. Hoboken,
NJ, USA: Wiley, 2005.

[42] W. J. Conover, Practical Nonparametric Statistics. New York, NY,
USA: Wiley, 1980.

[43] J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as methodology for comparing
evolutionary intelligence algorithms,” Swarm Evol. Comput., vol. 1,
no. 1, pp. 3–18, 2011.

[44] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scand. J. Stat., vol. 6, no. 2, pp. 65–70, 1979.

[45] R. Ruiz and C. Maroto, “A genetic algorithm for hybrid flowshops with
sequence dependent setup times and machine eligibility,” Eur. J. Oper.
Res., vol. 169, no. 3, pp. 781–800, 2006.

[46] X. Wang and L. Tang, “A tabu search heuristic for the hybrid flowshop
scheduling with finite intermediate buffers,” Comput. Oper. Res., vol.
36, no. 3, pp. 907–918, 2009.

Jun-Qing Li received the M.S. degree of computer
science and technology from Shandong Economic
University, Shandong, China, in 2004. He is cur-
rently working toward the Ph.D. degree in system
engineering at Northeastern University, Shenyang,
China.
Since 2004, he has been with School of Com-

puter Science Department, Liaocheng University,
Liaocheng, China, where he became an Associate
Professor in 2008. He has authored more than
30 refereed papers. His current research interests

include intelligent optimization and scheduling.

Quan-Ke Pan (M’15) received the B.Sc. and Ph.D.
degree Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 1993 and 2003,
respectively.
Since 2003, he has been with School of Com-

puter Science Department, Liaocheng University,
Liaocheng, China, where he became a Full Professor
in 2006. He has been with State Key Laboratory
of Synthetical Automation for Process Industries
(Northeastern University) since 2011. He has au-
thored more than 200 refereed papers. His current

research interests include intelligent optimization and scheduling.

Kun Mao received the B.S. and M.S. degrees from
Northeastern University, Shenyang, China, in 2008
and 2010, respectively, where he is currently working
toward the Ph.D. degree in control theory and control
engineering.
His current research interests include discrete op-

timization and scheduling.

