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a b s t r a c t

In this study, we proposed a discrete teaching-learning-based optimisation (DTLBO) for solving the flowshop
rescheduling problem. Five types of disruption events, namely machine breakdown, new job arrival,
cancellation of jobs, job processing variation and job release variation, are considered simultaneously. The
proposed algorithm aims to minimise two objectives, i.e., the maximal completion time and the instability
performance. Four discretisation operators are developed for the teaching phase and learning phase to enable
the TLBO algorithm to solve rescheduling problems. In addition, a modified iterated greedy (IG)-based local
search is embedded to enhance the searching ability of the proposed algorithm. Furthermore, four types of
DTLBO algorithms are developed to make detailed comparisons with different parameters. Experimental
comparisons on 90 realistic flowshop rescheduling instances with other efficient algorithms indicate that the
proposed algorithm is competitive in terms of its searching quality, robustness, and efficiency.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The flowshop scheduling problem (FSP) can be found in many
realistic production horizons, such as chemical, textile, metallurgical,
printed circuit board, automobile, and iron and steel making man-
ufacture (Garey et al., 1976; Nawaz et al., 1983; Ruiz et al., 2006; Pan
et al., 2008). The FSP has been verified to be an NP-hard problem
(Garey et al., 1976; Nawaz et al., 1983), and many researchers have
applied heuristics and meta-heuristics for solving FSP, such as genetic
algorithm (GA) (Ruiz et al., 2006), and particle swarm optimisation
(PSO) (Pan et al., 2008). Most of the literature assumes that all of the
machines are continuously available, and all of the jobs are determi-
nistic during the production horizon. However, in a realistic environ-
ment, many disruptions, such as a machine breakdown, new job
arrival, cancellation of jobs, job processing variation, and job release
variation, can make it impossible to apply the traditional scheduling
approach to an industrial horizon. In recent years, more and more
researchers have focused on rescheduling problems, in other words,
on considering disruptions in the scheduling process. Vieira et al.
gave a framework of strategies, policies, and methods for the

rescheduling of manufacturing systems (Vieira et al., 2003). Ouelhadj
and Petrovic provided a review of the state of the art of dynamic
scheduling for different methods, such as heuristics, meta-heuristics,
multi-agent systems, and other artificial intelligence techniques
(Ouelhadj and Petrovic, 2009).

Studies that have considered random machine breakdowns are
the following: Allahverdi and Mittenthal addressed the problem of
minimising the makespan in a two-machine flowshop when the
machines were subject to random breakdowns (Allahverdi and
Mittenthal, 1995). Schmidt analysed the deterministic scheduling
problems when the machines were not continuously available for
processing (Schmidt, 2000), while Zandieh and Gholami proposed an
immune algorithm for scheduling a hybrid flow shop (HFS) with
sequence-dependent setup times and machines with random break-
downs (Zandieh and Gholami, 2009). Very recently, Wang and Choi
presented a decomposition-based approach to solve flexible flow
shop (FFS) scheduling under random machine breakdown (Wang
and Choi, 2012). Mirabi et al. investigated the random machine
breakdown in a two-stage HFS context (Mirabi et al., 2013). Xiong
et al. solved the machine breakdown event in flexible job shop
scheduling problems (FJSP) (Xiong et al., 2013). To solve new job
arrival events, the following studies were performed: Hosseini and
Tavakkoli-Moghaddam proposed a hybrid algorithm that combined
GA and simulated annealing (SA) to solve a two-machine flowshop,
where each job has a time window and can arrive in its time window
randomly (Hosseini and Tavakkoli-Moghaddam 2013). Rahmani
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and Heydari considered a two-machine flowshop with uncertain
processing times and unexpected arrivals of new jobs (Rahmani and
Heydari, 2014). Rahmani et al. considered how to achieve a stable
schedule despite the arrival of new unpredicted jobs into the process
(Rahmani et al., 2013). Studies that address the cancellation of jobs are
the following: Madureira et al. presented an evolutionary computing
algorithm for dynamic scheduling problems that have random can-
cellation of jobs (Madureira et al., 2004). Silva et al. investigated a
dynamic environment in which the orders are cancelled during the
scheduling process by using GAs and ant colony optimisation (ACO)
algorithms (Silva et al., 2008). To address job processing time variation,
Wang et al. developed a hybrid algorithm with GAs and a hypothesis-
test method to solve the stochastic flow shop scheduling problem
(Wang et al., 2005). Wang and Choi proposed a decomposition-based
holonic approach for minimising the makespan of an FFS that has
stochastic processing times (Wang and Choi, 2014). For job release
time variations, Nilsson et al. discussed the modelling and analysis
of real-time systems that are subject to random time delays in a
communications network (Nilsson et al., 1998). Tang et al. proposed a
neural networkmodel and algorithm to solve the dynamic hybrid flow
shop scheduling problem (Tang et al., 2005). However, most existing
work addresses these disruptions only independently. Katragjini et al.
studied rescheduling problems with consideration of simultaneous
disruptions under flowshop scheduling problems (Katragjini et al.,
2013). Rahmani et al. investigated the rescheduling problem in flexible
flow shop problems, where three types of disruptions are considered,
i.e., new job arrivals, machine breakdowns, and job processing time
variations (Rahmani et al., 2013).

Very recently, by mimicking the teaching-learning process, a
novel population-based optimisation method called a teaching-
learning-based optimisation (TLBO) algorithm was proposed by
Rao et al. (2012), Rao and Patel (2013), Rao and Kalyankar (2013)
and Rao and Patel (2013). TLBO includes two vital components,
which are the teacher and the learners. The whole algorithm
evolves through two main phases, namely the teaching phase and
the learning phase. In the teaching phase, each learner improves
its status by using the difference between the teacher and the
mean result of the current population. During the learning phase,
each learner studies more knowledge from another learner in the
population. Through two types of learning, a learner can evolve to
find a near-optimal solution. It has been verified that TLBO is
competitive with other meta-heuristics, such as GA, ACO, PSO, and
artificial bee colony (ABC) (Rao et al., 2012; Rao and Patel, 2013;
Rao and Kalyankar, 2013; Rao and Patel, 2013).

In this study, to solve the flowshop rescheduling problems, we
proposed a discrete version of TLBO. Five types of disruptions are
considered simultaneously in this work, i.e., the machine breakdown,
new job arrival, cancellation of jobs, job processing variation, and job
release variation. A bi-objective performance measure that consists of
makespan and instability is also used, as given in reference (Katragjini
et al., 2013). The motivation of using makespan as a performance
measure is as follows: (1) the makespan criterion is commonly used
as the efficiency performance measurement in the rescheduling
problem, such as (Katragjini et al., 2013; Nof and HANK GRANT,
1991; Liu and Zhou, 2013; Tang et al., 2014); (2) the makespan
criterion is considered in reference (Katragjini et al., 2013) with the
same instances, and to make a detailed comparison with the IG
algorithm in (Katragjini et al., 2013), we also use the makespan as a
performance measurement; (3) in this study, the latest job, which
arrives in a rush order, does not have to be placed at the end of the
sequence; thus, the latest job does not necessarily determine the
makespan because this problem is not a single machine problem. The
instability objective is measured by the number of tasks whose
starting times have been altered in the new schedule.

The remainder of this paper is organised as follows: Section 2
briefly describes the problem. Next, the canonical TLBO is presented

in Section 3. Section 4 reports the discretisation of TLBO, while
Section 5 gives the framework of the proposed algorithm. Section 6
illustrates the experimental results and compares them to the
current performing algorithms from the literature to demonstrate
the superiority of the proposed algorithm. Finally, the last section
gives the concluding remarks and future research directions.

2. Problem definition

In this study, similar to in reference (Katragjini et al., 2013), we
consider the rescheduling problem of a permutation flowshop that is
subject to random disruption events. In the considered problem, we
have a set of N (i¼1,2,…,n) jobs to be processed on a set of M (j¼1,2,
…,m) machines. Each job should access each machine following the
same processing order, i.e., from the first machine to the last machine.
Hereafter, we call the static schedule without considering any disrup-
tion an on-going schedule and the schedule after considering the
disruption event a new schedule. For simplicity, we give the following
assumptions:

� For any machine breakdown event, we assume that the break-
down time and duration are not known a priori, and the job
that is preempted due to the machine breakdown resumes its
processing from the point at which the interruption occurred.

� Machine breakdowns occur only on busy machines. Three situa-
tions under machine breakdown disruptions must be considered
for the breakdown machine, i.e., the first situation for operations
that have a completion time of less than the disruption time point
t, the second situation for operations that have a completion time
that overlaps with the machine breakdown disruption, and the
third situation for operations that have a starting time that is later
than the disruption time point t.

� When a new job arrives in the system, reactive procedures are
prompted to introduce the new job to the first stage in the system.

� All of the jobs that are interrupted with any disruption should
remain with their assigned machine, and the subsequent work
should be delayed or postponed if necessary.

� All of the jobs that have started their first operations when the
disruption occurs should retain their scheduling orders.

� There are infinite buffers between any two stages.
� Preemption is not allowed; in other words, each job should wait for

the completion of the predecessor job on the same machine.
� The overlap between consecutive operations of the same job is not

allowed; in other words, the following operation cannot be started
until the completion of the predecessor operation of the same job.

2.1. Notation

The following notation is used to formulate the mathematical
model for the flowshop rescheduling problem that considers the
five types of disruptions.

Data or fixed parameters

pi;j The processing time for operation Oij in an on-going
schedule.

si;j The starting time of operation Oij in an on-going
schedule.

ci;j The completion time of operation Oij in an on-going
schedule.

ri;j The release time of operation Oij.
Bj
s The starting time point of the machine breakdown

disruption on machine j.
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Bj
e The recovery time point of the machine breakdown

disruption on machine j.
w1 The penalty coefficient.
M Sufficiently large constant.

Decision variables

si;j The starting time of operation Oij in the new schedule.
ci;j The completion time of operation Oij in the new

schedule.
pi;j The processing time of operation Oij in the new schedule.
xij A 0/1 variable that is equal to one if and only if operation

Oij has a different starting time in the on-going and new
schedules.

yi;j;1 A 0/1 variable that is equal to one if and only if si;j þ
pi;j rBj

s.
yi;j;2 A 0/1 variable that is equal to one if and only if si;j oBj

s
and si;j þpi;j 4Bj

s.
yi;j;3 A 0/1 variable that is equal to one if and only if Bj

srsi;j .

2.2. Mathematical model

With the variables defined above, the mathematical model for
the flowshop rescheduling problem is given as follows:

f ¼w1nf 1þð1�w1Þnf 2 ð1Þ

f 1 ¼ min max
1r irn

ci;m

� �
ð2Þ

f 2 ¼ min ∑
n

i ¼ 1
∑
m

j ¼ 1
xij

( )
ð3Þ

s.t.

ci;j �si;j �pi;j þð1�yi;j;1ÞMZ0 ð4Þ

ci;j �si;j �pi;j �ð1�yi;j;1ÞMr0 ð5Þ

ci;j �si;j �pi;j �Bj
eþBj

sþð1�yi;j;2ÞMZ0 ð6Þ

ci;j �si;j �pi;j �Bj
eþBj

s�ð1�yi;j;2ÞMr0 ð7Þ

ci;j � max fsi;j ;Bj
eg�pi;j þð1�yi;j;3ÞMZ0 ð8Þ

ci;j � max fsi;j ;Bj
eg�pi;j �ð1�yi;j;3ÞMr0 ð9Þ

∑
3

k ¼ 1
yi;j;k ¼ 1; iAf1;2;…;ng; jAf1;2;…;mg; kAf1;2;3g ð10Þ

ci1 ;j �ci2 ;j �pi1 ;j Z0 or ci2 ;j �ci1 ;j �pi2 ;j Z0; 8 i1a i2 ð11Þ

si;j Zri;j; iAf1;2;…;ng; jAf1;2;…;mg ð12Þ

siþ1;j Zci;j ; iAf1;2;…;n�1g; jAf1;2;…;mg ð13Þ

xij ¼ 0;1f g; iAf1;2;…;ng; jAf1;2;…;mg ð14Þ

yijk ¼ 0;1f g; iAf1;2;…;ng; jAf1;2;…;mg; kAf1;2;3g ð15Þ
In this mathematical model, the total weighted objective and the

makespan objective are given in Eqs. (1) and (2), respectively. Eq. (3)
illustrates the second objective of the problem, i.e., the instability
objective, which is used to minimise the number of tasks whose
starting times have been altered in the new schedule. Three situa-
tions under the machine breakdown disruption are guaranteed by
Constraints (4) to (9). The first situation that is guaranteed by

Constraints (4) and (5) is for the operations that have completed
their tasks before the machine breakdown. Constraints (6) and (7)
guarantee the second situation, which is for the operations that
overlap with the machine breakdown, while Constraints (8) and (9)
guarantee the third situation, in which the operations begin their
work after the machine breakdown disruption. Constraint (10) shows
that only one case can occur in the problem that is under study.
Constraint (11) shows that multiple jobs cannot be processed on the
same machine at the same time. Constraint (12) implies that a job
cannot be started until its release event occurs. In Constraint (13), the
operation sequence is realised for the same job; in other words, the
following operation cannot be started until the completion of the
predecessor operation of the same job. Constraints (14) and (15)
define the value ranges for the decision variables.

3. The canonical TLBO

TLBO mimics the learning process of a teacher and a population
of learners. In the canonical TLBO, several learners construct a
population of activities. The best learner of the current population
is selected as the teacher. All of the learners will perform two
evolving phases, i.e., the teaching phase and the learning phase.

3.1. Teaching phase

In the canonical TLBO, the first part of the algorithm is
the teaching phase, where the learners learn through the teacher
by using the difference between the teacher and the mean result
of the current population. In a problem with n dimension, at
any iteration t, let Xi

t (i¼1,2,…,m) be the ith learner in the
population, let Mt;j be the mean result of the learners in a
particular subject j (j¼1,2,…,n), and let Xb

t be the best learner in
the current population, which is also selected as the current
teacher. The detailed implementation of the teaching phase is
given as follows:

Step 1. Compute the difference Dt;j

Let Dt;j be the difference between the teacher Xb
t and the mean

result Mt;j. Formula (16) gives the computation process of Dt;j.

Dt;j ¼ rtðXb
t;j�TFMt;jÞ ð16Þ

where Xb
t;j is the result of the teacher in subject j, rt is a random

number in the range [0,1], and TF is the teaching factor that decides
the value of the mean to be changed. The value of TF can be either
1 or 2, which is again a heuristic step and is decided randomly with
equal probability (Rao et al., 2012).
Step 2. Generate a new learner
Learner Xi

t updates its state in subject j by combining the
difference Dt;j and its current state:

Xi'
t;j ¼ Xi

t;jþDt;j ð17Þ
where Xi'

t;j is the updated value of the current ith learner Xi
t in

subject j.
Step 3. If Xi'

t is better than Xi
t , then replace the latter by the

new value.

3.2. Learning phase

In the learning phase, several learners evolve through learning
from each other. The main steps of the learning phase are as follows:

Step 1. For the learner Xi
t , randomly select another learner Xk

t .
Step 2. If Xi

t is better than Xk
t , then let

Xi'
t ¼ Xi

tþriðXi
t�Xk

t Þ ð18Þ
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Step 3. If Xk
t is better than Xi

t , then let

Xi0
t ¼ Xi

tþriðXk
t �Xi

tÞ ð19Þ
Step 4. If Xi'

t is better than Xi
t , then replace the latter by the

new value.

4. Discretisation of TLBO

From the detailed descriptions of the canonical TLBO, we can see
that the difference function is used in both the teaching and
learning phases. However, the difference function can be directly
applied only when solving continuous optimisation problems. In
other words, when solving the discrete optimisation problems, we
must develop a discrete version of TLBO. To make TLBO adapt to the
flowshop rescheduling problem, we develop two types of teaching
phase heuristics, which are called TP-I and TP-II, respectively, and
we also implement two types of learning phase heuristics, which
are called LP-I and LP-II, respectively. The detailed steps of the
above heuristics are given as follows:

4.1. Teaching phase TP-I

We first implement the function TP-I with an idea that directly
arises from the canonical TLBO. The detailed implementation is
given as follows:

4.1.1. Discretisation of Mt

For the mean result of the learners at iteration t, we develop a
heuristic as follows:

Step 1. For each subject j (j¼1,2,…,n), compute the sum of each
learner in the population. The result is denoted as St ¼
fSt;1; St;2:::; St;ng.
Step 2. Uniformly spread each element of St into the range of
[1,n] by using the following formula: St;j' ¼modðSt;j � 1; nÞþ1,
where the function mod(x, y) is used to find the remainder of
the division of x by y, St;j' is the uniform value and j¼1,2,…,n.

For example, we are given three learners, e.g., {1, 2, 3, 4, 5, 6},
{6, 3, 2, 4, 5, 1}, and {2, 3, 4, 6, 5, 1}, where n¼6. The sum value
St¼{9, 8, 10, 14, 15, 8}, and the uniform result is {3, 2, 4, 2, 3, 2}.

4.1.2. Discretisation of Dt

For the difference between the teacher and the mean result at
iteration t, we use formula (16) in the canonical TLBO.

For the above example, suppose that {1, 2, 3, 4, 5, 6} is the
teacher, which is the best of the three learners. Let TF¼1, and
rt¼0.5; then, Dt¼{-1.5, -0.5, -1, 0.5, 0.5, 1.5}

4.1.3. Generate a new unfeasible learner
For each learner Xi

t in the population, we first use formula (17)
to generate a new learner Xi'

t ; second, for the newly-generated
learner Xi'

t , we transfer each element into an integer by taking the
integer part of each element. It should be noted that the newly-
generated learner Xi'

t might not be a feasible solution because of
the repeated elements. Therefore, it must go through the following
steps to make it feasible:

4.1.4. Repair the newly-generated learner
The repair function is implemented as follows:

Step 1. For each repeated element in Xi'
t , only the first occurrence

remains, and we delete all of the following occurrences.

Step 2. For each blank position in Xi'
t , find the unassigned job

that has the largest number of occurrences in the population. In
other words, for each subject j, count the number of occur-
rences of each job from all learners in the population, and then
find the job that has the largest number of occurrences. If this
criterion is not satisfied, then skip this position.
Step 3. For the remaining blank position, we randomly select an
unassigned job to fill with it.

In the above example, for the learner {6, 3, 2, 4, 5, 1}, the update
vector is {4.5, 2.5, 1, 4.5, 5.5, 2.5}. Then, the resulting integer vector
is {4, 2, 1, 4, 5, 2}, which corresponds to the newly-generated
unfeasible learner. Because there are repeated elements in the
vector, an unfeasible learner should go through the repair phase.
In step 1, the remaining vector is {4, 2, 1, -1, 5, -1}, where ‘-1’
represents the blank position. In step 2, the vector becomes {4, 2, 1,
6, 5, -1}. Then, in the last step, the final vector is {4, 2, 1, 6, 5, 3}. It
should be noted that the computational time complexity of the
repair function that is discussed above is O(nm).

4.1.5. Update the current learner
Evaluate the newly-generated learner, and update Xi

t by Xi'
t if

the latter is better than the former.

4.2. Teaching phase TP-II

The first type of teaching phase heuristic TP-I arises directly
from the canonical TLBO, which goes through five procedures and
should undergo a translation from a real number to an integer
number. The main computational time is consumed in the repair
process and has the computational time complexity of O(nm).
However, TP-I has the following disadvantages: (1) in learning
from the difference between the teacher and the mean result,
several good characteristics of the current learner could be lost;
and (2) in the repair function, the randomly selected job could
produce a solution that has a lower performance.

In TP-II, we embed the IG heuristic in the TLBO to enhance the
searching ability of the algorithm. The detailed implementation is
given as follows:

4.2.1. Discretisation of Mt

Instead of computing the mean result of the learners at
iteration t, we randomly select a learner in the current population
to be the mean result Mt . The main idea behind this method is
that, in the current population, any learner can learn from the
teaching process between the teacher and a random learner rather
than the mean result (which is used in the canonical TLBO).
Compared with the method that is discussed in sub-Section 4.1.1,
this heuristic has the following advantages: (1) computational
time is saved; and (2) the teaching information comes from a
randomly selected learner, which can enhance the exploration
capability of the algorithm.

4.2.2. Discretisation of Dt

The difference Dt between the teacher Xb
t and the randomly

selected learner Xr
t is computed as follows: (1) first, initialise an

empty vector, which is called Dt; (2) second, for each subject j, if
Xb
t;j¼Xr

t;j, then skip it; otherwise, record j into the vector Dt .
Therefore, the resulting vector Dt represents the different element
positions between Xb

t and Xr
t . For example, given Xb

t ¼{6, 3, 2, 4, 5,
1}, and Xr

t ¼{1, 2, 3, 4, 5, 6}, then Dt¼{1, 2, 3, 6}, which implies that
four elements, i.e., subjects 1, 2, 3, and 6 in Xr

t are different from
the teacher.
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4.2.3. IG-based local search
To improve the searching ability of the algorithm, we developed a

modified integrated greedy (IG) function that is calledMIG_localSearch.
In contrast with the canonical IG heuristic in (Ruiz and Stützle, 2007),
in the destruction stage of MIG_localSearch, the jobs that are erased
from the current solution are selected based on the difference vector
rather than on a random method, as in (Ruiz and Stützle, 2007).
Furthermore, to solve the rescheduling problem at a large scale, the
maximal number of candidate positions for an erased job in the
construction stage is limited to Jmax. In other words, we limit the
number of possible insert positions to decrease the computational
complexity of the proposed algorithm. The detailed implementation of
MIG_localSearch is given in Fig. 1.

4.2.4. Generate a new learner
To generate a new learner during the teaching phase, we

perform the proposed MIG_localSearch function by using the two
parameters, i.e., the current learner Xi

t and the difference vector Dt .
After applying the MIG_localSearch function, the new learner is
generated, and the teaching phase is completed.

4.2.5. A simple example using MIG_localSearch
Here, we give a simple example to illustrate the procedure of the

proposed MIG_localSearch function. We are given a 10-job and 5-
machine flowshop rescheduling problem, two learners, Xi

t¼{1, 2, 3,
4, 5, 8, 6, 7, 9, 10} and Xr

t ¼{1, 2, 3, 4, 6, 8, 10, 9, 7, 5}, and the teacher

Xb
t ¼{1, 2, 3, 4, 5, 7, 8, 9, 10, 6}. Suppose that the first four jobs are

divided into the first group by the disruption event time. Before
applying the MIG_localSearch function, we first compute the differ-
ence between X2 and the teacher. The resulting difference vector is
Dt¼{5, 6, 7, 9, 10}. Then, we obtain the input parameters for the
MIG_localSearch as follows: the current learner is Xi

t , the destruction
length is d¼3, and the difference vector is Dt¼{5, 6, 7, 9, 10}.

In the destruction stage, we first randomly select three job
positions from Dt , for example, let Dd¼{5, 7, 9}. Then, the current
learner should delete the jobs at positions 5, 7, and 9. Therefore, the
resulting learner is Xi

t ¼{1, 2, 3, 4, –, 8, –, 7, –, 10}, and Xd
t ¼{5, 6, 9}.

The detailed destruction process can be seen in Fig. 2 (a).
In the construction stage, the jobs J5, J7, and J9 are inserted into Xi

t
one by one. The optimal position for each newly-inserted job is the
position that minimises the objective values of the partial solution. The
detailed illustration of the construction stage can be seen in Fig. 2 (b).

4.3. Learning phase-I

For the learner Xi
t , we randomly select another learner Xk

t , and
then, we apply the first three steps, as discussed in Section 3.2.
Then, the newly-generated solution must go through the repair
function that is discussed in Section 4.1.4 to make it feasible.

Given three learners, {1, 2, 3, 4, 5, 6}, {6, 3, 2, 4, 5, 1}, and {2, 3, 4,
6, 5, 1}, suppose that {1, 2, 3, 4, 5, 6} and {6, 3, 2, 4, 5, 1} are selected
to be the two learners and the former is better than the latter. Let
ri¼0.3, and then, apply formula (18) to {1, 2, 3, 4, 5, 6}. The resulting

Fig. 1. Pseudo code of the function MIG_localSearch.
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vector is {–1.5, 1.5, 3.5, 4, 1, 8.5}. After the repair process, the new
resulting solution is {4, 1, 3, 6, 5, 2}. Then, apply the last step in
Section 3.2 to update the selected learner.

4.4. Learning phase-II

For the learner Xi
t , perform the following steps.

Step 1. From the current population, randomly select another
learner Xr

t that is different from the current learner Xi
t .

Step 2. Compute the difference between Xr
t and Xi

t , and then,
store the difference into a vector called Dt .
Step 3. Apply the MIG_localSearch function by inputting the
three parameters, i.e., the current learner Xi

t , the difference
vector Dt , and the destruction length d.

5. The framework of DTLBO

5.1. Encoding

In this study, we use the permutation representation mechanism
for solving the flowshop rescheduling problem. In other words, in
the solution representation, each element is represented by an
integer that corresponds to the job number. For example, given a
flowshop rescheduling problem with 5 jobs and 3 machines, one of
the solutions is {3, 2, 5, 4, 1}, which means that on each machine,
the processing order is J3, J2, J5, J4, and J1.

5.2. Rescheduling decoding approach

In this study, we simultaneously consider five types of disrup-
tion, i.e., machine breakdowns, new job arrivals, cancellation of
jobs, job processing variation, and job release variation.

5.2.1. Job division
When any disruption occurs at time point t, the first step to react

to the event is to divide all of the jobs into two groups, i.e., πpf and
πp. The job whose first operation has been started will be classified
into the first group πpf , while the second group πp contains the
subsequent jobs. For the following example in Fig. 3, four jobs are to
be processed on three machines. At time point t, a machine
breakdown event occurs on machine M2. Then, the four jobs will
be classified into two groups based on whether their first operation
has been started. Therefore, the first group πpf contains J1 and J2,
while the second group πp includes J3 and J4. The jobs in the first
group should keep the scheduling sequence, while the jobs in the
second group can be rescheduled to minimise the given criteria.

5.2.2. Event processing method

(1) Machine breakdown
In this study, machine breakdowns occur only on busy machines,
and the affected operation that has started its work on the
breakdown machine can continue its remaining work on the same
machine. To schedule each operation after themachine breakdown
disruption, three situations must be considered for the breakdown
machine, i.e., the operations that finished before the disruption, the
operations that overlapped with the disruption, and the operations
that started after the disruption. Fig. 4 gives an example to
illustrate the decoding procedure for the three situations.
Fig. 4(a) gives the first situation, which is guaranteed by Con-
straints (4) and (5) in Section 2. In the first situation, operation
O12 has completed its tasks before the machine breakdown
disruption, and therefore, it will retain the starting and comple-
tion time as in the on-going schedule. Fig. 4(b) reports the second
situation, which is guaranteed by Constraints (6) and (7) in
Section 2. In the second situation, operation O22 overlaps with
the machine breakdown disruption. In that situation, we should
retain the assigned machine for the interrupted operation and
delay the subsequent work until the recovery of the breakdown
machine. Therefore, in the second situation, the interrupted
operation O22 will retain its starting time as in the on-going
schedule while postponing its completion time. Fig. 4(c) lists the
third situation, which is guaranteed by Constraints (8) and (9) in
Section 2. In the last situation, operation O22 begins its task after
the machine breakdown disruption. We should guarantee that
the starting time of the affected operation is not earlier than the
recovery time of the breakdown machine.

(2) New job arrival
In the situation in which a new job arrives at time point t, all of
the jobs should be divided into two groups, and the newly
arrived job should be classified into the second group. In other
words, the newly arrived job should be included in the

Fig. 2. Flowchart of the MIG_localSearch function.

Fig. 3. Job division.
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rescheduled parts. After the arrival of the new job, the repre-
sentation length of each learner in the population should be
adjusted.

(3) Cancellation of jobs
In the cancellation of jobs situation, all of the work of the job
to be cancelled that has been completed should remain, while
the subsequent work should be cancelled. After the cancella-
tion of the affected job, the representation length of each
learner should also be adjusted.

(4) Job processing variation
At time point t, the processing of the affected job can be
increased or decreased. In this situation, the completion time
of the affected operation will affect the following operation on
the same machine. Fig. 5 gives an example of the job proces-
sing variation, where job J1 must increase its processing time
on machine M2 at time t. The rectangle that is filled with a grid
and labelled ‘J1’ represents the variation duration.

(5) Job release variation
At time point t, the affected operation should begin its processing
on the given machine according to the on-going scheduling.
However, the release time of the operation varies because of
many factors, such as the material that is delayed and the
transportation time variation. In this case, the assigned machine
should wait until the operation is available. The situation of job
release variation is given in Fig. 6.

(6) Multiple disruptions

At time point t, when there are multiple disruptions that occur
simultaneously, we should process these multiple disruptions imme-
diately. The detailed procedures are given as follows:

Step 1. Divide all of the jobs into two groups based on the
disruption time t.
Step 2. For the machine breakdown event, increase the break-
down duration for the processing time of the affected operation
on the breakdownmachine; for the newly arrived job, add the job
to the second group for rescheduling; for the cancelled job, retain
its completed work and delete it from the two divided groups; for
the release variation job, postpone its starting time on the
affected machine; and for the processing time variation job,
change its processing time on the affected machine.
w?>Step 3. If the machine breakdown and processing time
variation occur simultaneously, then add the maximal value
between the machine breakdown duration Dmb and processing
time variation Vpt, i.e., max{Dmb, Vpt}, to the processing time of
the affected operation.

Fig. 5. Job processing variation.

Fig. 4. Machine breakdown case. (a) The first situation: the completion time of the job is less than Bj
s . (b) The second situation: the completion time of the job is between Bj

s and Bj
e .

(c) The third situation: the starting time of the job is later than Bj
s .
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Step 4. If the machine breakdown and release time variation
occur simultaneously, then select the maximal value between
the machine restart time and job release time as the starting
time of the affected operation.
Step 5. After processing all of the disruption events, reschedule
all of the jobs in the second group to minimise the objective
values of the system.

5.3. Normalisation of the objective

Because the makespan and instability values are measured in
different units and could have different orders of magnitude, in
this study, we used the normalisation process, which can be
referred to in (Katragjini et al., 2013), to scale their values in such
a way that they all fall into the range of 0 to 1. After applying the
normalisation process, the objective function for the solution S is
computed as follows:

f ðSÞ ¼w1nNpðf 1ðSÞÞþð1�w1ÞnNpðf 2ðSÞÞ ð20Þ
where Npðf 1ðSÞÞ and Npðf 2ðSÞÞ represent the normalisation process
function for the objective function values f 1ðSÞ and f 2ðSÞ, respec-
tively. These functions are calculated as follows:

Npðf 1ðSÞÞ ¼
f 1ðSÞ� lowðf 1Þ
upðf 1Þ� lowðf 1Þ

ð21Þ

Npðf 2ðSÞÞ ¼
f 2ðSÞ� lowðf 2Þ
upðf 2Þ� lowðf 2Þ

ð22Þ

where lowð:Þ and upð:Þ represent the lower and upper bounds for
the corresponding objective function, respectively. The computa-
tional process for the lower and upper bounds can be found in
(Katragjini et al., 2013).

5.4. Initialisation

To begin the algorithm, a population of learners should be
initialised. It is crucial to generate an initial population that has a
high level of quality and diversity. In this study, the initialisation
method is the following:

Step 1. Generate a learner by using the NEH method (Nawaz
et al., 1983).
Step 2. Perform the following step for Ps-1 times.
Step 3. Randomly generate a learner. If the newly generated
solution is not equal to any individual in the current popula-
tion, then insert it into the population. Otherwise, discard it.

5.5. Framework

The flowchart of the proposed algorithm is the following:

Step 1. Set the system parameters.
Step 2. Generate the initial population of learners.
Step 3. Evaluate each learner and select the best learner as the
current teacher. Record the best solution that has been found
thus far.
Step 4. If the stop condition is satisfied, then stop the algorithm.
Otherwise, perform the following steps:
Step 5. Teaching phase

Step 5.1 Apply the teaching phase heuristic TP-I or TP-II for
each learner in the current population.
Step 5.2 Record the best solution that has been found thus
far, and update the current teacher.

Step 6. Learning phase
Step 6.1 Apply the learning phase heuristic LP-I or LP-II for
each learner in the current population.

Step 6.2 Record the best solution that has been found thus far.

5.6. A simple example

Suppose that we have a flowshop rescheduling problem that has
five jobs and three machines, and the processing times are given in
Table 1. At time point 10, a machine breakdown event occurs on
machine M1. Given the on-going schedule {4, 1, 2, 5, 3}, the Gantt
chart is illustrated in Fig. 7. Then, the detailed rescheduling process
can be listed as follows: first, the two divided groups are {4} and
{1, 2, 5, 3}. In other words, the rescheduling part is {1, 2, 5, 3};
second, after the TLBO method is applied, many neighbouring
solutions are generated and evaluated. Fig. 8 reports the optimal
solution considering the machine breakdown disruption for the
example problem that is given in Fig. 7. In the two figures, each
operation is represented by a rectangle. The starting and comple-
tion time of each operation are listed in the upper left corner and
lower right corner, respectively. The sequence of each operation on
each machine represents the scheduling order. For example, in
Fig. 7, on machine M1, the processing sequence is J4, J1, J2, J5, J3. In
Fig. 8, the machine breakdown event on M1 is considered and is
represented by a rectangle labelled with ‘B’.

It can be seen from Figs. 7 and 8 that only the two operations O41

(the first operation of job J4) and O33 (the last operation of job J3)
have the same starting time in the on-going and new schedules.
Therefore, we have thirteen tasks whose starting times have been
altered in the new schedule, and thus, the value of f2 is 13. Then, the
fitness value is equal to 173.33, with f1¼242, f2¼13, and w1¼0.7.

6. Numerical results

To test the efficiency and effectiveness of the proposed algo-
rithm, we select 90 Taillard’s instances with different disruption
events from (Katragjini et al., 2013), which can be downloaded
from the website “http://soa.iti.es/rruiz”. Five types of disruption
events are considered in the proposed algorithm, i.e., machine
breakdown, new job arrivals, cancellation of jobs, job processing
variation, and job release variation. The proposed algorithm is

Fig. 6. Job release variation.

Table 1
Processing time.

J1 J2 J3 J4 J5

M1 30 32 33 30 30
M2 20 35 28 20 20
M3 50 37 35 50 10
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coded in Cþþ , on a DELL i7 CPU with 16GB memory. Each
instance is performed with 20 runs, and the best and average
values are collected for comparison.

6.1. Experimental instances

The given 90 instances range from 20 jobs and 5 machines to
100 jobs and 20 machines. For each instance, we tested five
independent benchmarks with different disruption events from
Katragjini et al. Katragjini et al. (2013). In other words, in total, we
tested 450 instances to verify the performance of our proposed
algorithms. To make the comparison results clear and easy to
understand, we group each instance by the initial Taillard problem
size. Therefore, in the end, we obtain nine groups of instances, and
each group contains fifty different and independent problems.

The disruption events benchmarks and the detailed description
for all types of disruption events can be found in http://soa.iti.es/. For
example, for the machine breakdown disruption, the schedule
disruption is simulated by generating random machine breakdowns
at time t, 0 rt rCmax(B), where Cmax(B) denotes the makespan of
baseline B. The baseline B for each instance is generated by using the
Iterated Greedy algorithm (IG) of Ruiz and Stutzle (2007) (Ruiz and
Stützle, 2007). In addition, machine breakdowns occur only on busy
machines, i.e., machines do not undergo failures during idle times.
The downtime duration is determined immediately after the event
occurs. Down-times are generated using a uniform distribution in the

range U[1,…,99]. No other disruption is observed on the same
machine before the breakdown disturbance is recovered. A job that
is preempted due to a machine breakdown resumes its processing
from the point at which the interruption occurred. At most, one
disruption of a known duration D occurs at every time t, i.e., only one
machine can be affected by a breakdown at time t.

6.2. Experimental parameters

In this study, the proposed algorithm has several parameters. We
conducted a preliminary experiment to set the parameters. In the
experiment, we try out several typical values for each parameter while
fixing the other parameters. After the preliminary experiments and
analysis, we find two key parameters that have an important role for
the algorithm performance. According to reference (Katragjini et al.,
2013) and our preliminary experiments, the other less important
parameters are set as follows: (1) The destruction length d is set in the
following way: if the length of the second group (hereafter called Lse)
that was discussed in Section 5.2.1 exceeds or is equal to 4, then set d
to 4; otherwise, set d to Lse -1. (2) According to the computational
complexity of the proposed algorithm, the maximal number of
candidate positions for an erased job in the construction stage is
given by Jmax¼50. (3) The time limit to stop the algorithm is Sc¼50 s.

To set the value for the two key parameters, i.e., the population
size Ps and the teacher learning factor TF, we implement six types
of algorithms with different values, which are given in Table 2. The
canonical TLBO are implemented by using TP-I and LP-I heuristics
in the teaching phase and learning phase, respectively. For each
instance, we memorised the best solution that can be found by all
of the compared algorithms, and we calculated the relative
percentage deviation over the best solution for each compared
algorithm, which is computed as follows:

RPDi ¼
Compki �Besti

Besti
� 100 ð23Þ

where Compki is the optimal solution that is found by the kth
compared algorithm, while Besti is the best solution that is found
by all of the compared algorithms. In the comparison results, we
calculated the average relative percentage deviation (RPD) for each
group of the same problem size.

The detailed comparisons of the best objective values for the
given nine groups of instances among the six proposed algorithms
are given in Table 3. The weighted coefficient is set to 0.5 to
represent the same importance in the two objectives. It can be
seen from Table 3 that for solving the given nine groups of
instances with different problem scales, the proposed TLBO-V is
the best among the given six algorithms. The following algorithms
are TLBO-VI, TLBO-IV, TLBO-III, TLBO-II, and TLBO-I, respectively.
Therefore, in the following experiments, we set the first two
parameters to be the same as with TLBO-V.

6.3. Effectiveness of different DTLBO heuristics

From the experimental analysis discussed in Section 6.2, we
conclude that the proposed TLBO-V is the best algorithm among

Fig. 7. Ongoing schedule.

Fig. 8. Scheduling after machine breakdown.

Table 2
Different values for the first two parameters.

Algorithm Ps TF

TLBO-I 10 1
TLBO-II 20 1
TLBO-III 10 2
TLBO-IV 20 2
TLBO-V 50 1
TLBO-VI 50 2
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the six compared algorithms, and it will be named DTLBO-I
hereafter. In this section, we also develop three other types of
DTLBO algorithms, which are called DTLBO-II, DTLBO-III, and
DTLBO-IV, to test the effects of different discretisation approaches
for five types of disruptions. The detailed differences in the
implementations of the four algorithms are given in Table 4.

Table 5 gives the comparison results that were collected from the
proposed algorithms for solving the given nine groups of instances.

In Table 5, the first column gives the name of each group of bench-
marks, which is represented by a pair of numbers, i.e., the number of
jobs and the number of machines. The following four columns report
the best RPD values that were collected by the four algorithms, i.e.,

Table 3
Comparison results of the best RPD values (w1¼0.5).

Problem RPD

TLBO-I TLBO-II TLBO-III TLBO-IV TLBO-V TLBO-VI

Ta20�5 3.91 3.92 0.97 1.05 0.00 1.48
Ta20�10 4.38 4.02 3.44 3.51 2.12 0.00
Ta20�20 1.79 1.73 1.21 0.75 1.07 0.00
Ta50�5 2.07 2.32 2.34 2.04 0.00 2.13
Ta50�10 2.78 2.09 1.75 1.09 0.00 1.68
Ta50�20 1.43 1.32 0.21 0.32 0.00 1.07
Ta100�5 0.20 0.00 0.14 0.21 0.34 0.38
Ta100�10 0.21 0.11 0.00 0.09 0.19 0.43
Ta100�20 0.35 0.36 0.07 0.00 0.26 0.64
Average 1.90 1.76 1.13 1.01 0.44 0.87

Table 4
Four algorithms with different implementations.

Teaching phase Learning phase

DTLBO-I TP-I LP-I
DTLBO-II TP-I LP-II
DTLBO-III TP-II LP-I
DTLBO-IV TP-II LP-II

Table 5
Comparison results of the best RPD values (w1¼0.5).

Problem RPD

DTLBO-I DTLBO-II DTLBO-III DTLBO-IV

Ta20�5 5.17 0.02 0.00 0.05
Ta20�10 5.25 0.76 0.01 0.00
Ta20�20 5.80 0.75 0.00 0.00
Ta50�5 14.55 0.00 3.61 3.93
Ta50�10 4.88 0.04 0.00 1.22
Ta50�20 4.00 0.00 0.86 1.79
Ta100�5 4.67 0.00 1.15 0.93
Ta100�10 2.51 0.00 0.28 0.08
Ta100�20 0.74 0.19 2.29 0.00
Average 5.29 0.20 0.91 0.89

Table 6
Comparison results of the best RPD values (w1¼0.1).

Problem TLBO IG DTLBO

Ta20�5 9.89 3.16 0.00
Ta20�10 6.94 1.73 0.00
Ta20�20 6.43 1.15 0.00
Ta50�5 11.94 10.89 0.00
Ta50�10 5.46 5.29 0.00
Ta50�20 2.34 2.34 0.00
Ta100�5 6.60 6.41 0.00
Ta100�10 2.85 2.78 0.00
Ta100�20 1.75 1.74 0.00
Average 6.02 3.94 0.00

Table 7
Comparison results of the best RPD values (w1¼0.5).

Problem TLBO IG DTLBO

Ta20�5 9.40 2.77 0.00
Ta20�10 5.62 1.46 0.00
Ta20�20 3.43 0.00 0.31
Ta50�5 13.52 12.13 0.00
Ta50�10 4.22 4.00 0.00
Ta50�20 2.81 2.81 0.00
Ta100�5 6.83 6.45 0.00
Ta100�10 2.51 2.40 0.00
Ta100�20 1.19 1.17 0.00
Average 5.50 3.69 0.03

Table 8
Comparison results of the best RPD values (w1¼0.9).

Problem TLBO IG DTLBO

Ta20�5 4.14 1.04 0.00
Ta20�10 1.48 0.55 0.00
Ta20�20 0.24 0.13 0.00
Ta50�5 9.91 9.14 0.00
Ta50�10 2.19 2.19 0.00
Ta50�20 1.61 1.61 0.00
Ta100�5 5.70 5.52 0.00
Ta100�10 2.14 2.10 0.00
Ta100�20 1.62 1.62 0.00
Average 3.23 2.66 0.00

Table 9
Comparison results of the best RPD values (w1¼0.1).

Problem RPD

DTLBO-II hGA IG ILS PSO

Ta20�5 0.00 2.22 1.90 11.05 2.54
Ta20�10 0.00 1.01 2.29 7.94 3.08
Ta20�20 0.13 0.00 2.44 5.93 2.06
Ta50�5 0.00 14.31 7.98 19.90 18.58
Ta50�10 0.00 8.97 3.86 10.10 10.52
Ta50�20 0.00 5.63 4.70 7.90 6.95
Ta100�5 0.00 4.50 1.13 5.11 5.12
Ta100�10 0.00 2.36 0.54 3.82 4.29
Ta100�20 0.00 5.17 0.50 5.08 6.03
Average 0.01 4.91 2.82 8.54 6.58

Table 10
Comparison results of the average RPD values (w1¼0.1).

Problem RPD

DTLBO-II hGA IG ILS PSO

Ta20�5 0.00 4.06 1.73 7.51 3.49
Ta20�10 0.00 2.05 1.82 5.39 3.64
Ta20�20 0.00 0.05 1.39 2.27 3.32
Ta50�5 0.00 8.48 6.97 5.76 7.60
Ta50�10 0.00 5.52 3.85 1.40 4.78
Ta50�20 0.00 4.47 2.75 1.83 2.76
Ta100�5 0.00 2.20 1.86 0.34 1.28
Ta100�10 0.06 1.65 2.35 0.00 1.61
Ta100�20 0.00 2.09 2.30 0.07 1.74
Average 0.01 3.40 2.78 2.73 3.36
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DTLBO-I, DTLBO-II, DTLBO-III, and DTLBO-IV. The last line in Table 5
tells the average performance for each of the compared algorithms. It
can be concluded from Table 5 that (1) for solving the first three
groups of benchmarks that have a relatively small scale, e.g.,
problems with 20 jobs, DTLBO-IV performs the best among the four
compared algorithms; (2) for solving the medium-scale problems
that have 50 jobs, DTLBO-II is the best algorithm. It should be noted
that DTLBO-I obtains a relatively worse result for solving the
“Ta50�5” group of benchmarks; (3) for solving the last three groups
of instances which have relatively large scales, DTLBO-II shows
superior performance compared with the other three algorithms;
(4) from the last row in the table, we can see that, on average,
DTLBO-II is the best algorithm among the four algorithms and is
obviously better than the other compared algorithms. It should be
noted that DTLBO-I is obviously worse than the other three com-
pared algorithms. The comparison results in Table 5 verify that the

proposed IG-based local search function MIG_localSearch can
enhance the searching ability of the proposed algorithm. However,
because of the computational complexity, it is a good choice to utilise
the local search functionMIG_localSearch in the learning phase rather
than in both the teaching and learning phases.

6.4. Comparisons with the IG algorithm for three types of disruptions

In this section, we make a detailed comparisonwith the canonical
TLBO and IG (developed by Katragjini et al. (2013) by using the same
instances, the same disruption events (machine breakdowns, new
job arrivals and release time delays) and the same objective function
(makespan and instability).

Tables 6, 7, and 8 give the comparison results that were collected
from the three compared algorithms, with w1 set to 0.1, 0.5, and 0.9,
respectively. In the three comparison tables, the first column tells
the name of each group of benchmarks. The next three columns
report the RPD values that were collected from the three algorithms,
i.e., TLBO, IG, and DTLBO. The last line tells the average performance
for each compared algorithm. It can be concluded from the three
tables that (1) in the case in which the weight coefficient value (w1)
is set to 0.1, which means that we assign more importance to the
instability objective, the proposed DTLBO algorithm obtained opti-
mal values for all of the instances. The average performance in the
last line also shows that DTLBO is obviously better than the other
two algorithms; (2) for a comparison with w1¼0.5, DTLBO can
obtain eight better results out of nine groups of instances. The
second best algorithm, IG, can obtain only one optimal result; (3) for
the case in which w1¼0.9, which assigns more importance to the
makespan objective, DTLBO can also obtain all of the optimal values
for the considered problems. The average performance also shows
the efficiency of the proposed algorithm.

Table 11
Comparison results of the best RPD values (w1¼0.5).

Problem RPD

DTLBO-II hGA IG ILS PSO

Ta20�5 0.00 1.98 2.10 7.56 2.19
Ta20�10 0.06 0.04 0.00 6.16 1.67
Ta20�20 0.00 0.05 1.73 4.26 1.11
Ta50�5 0.00 15.69 7.62 18.89 17.35
Ta50�10 0.00 7.19 2.49 9.03 8.95
Ta50�20 0.00 6.65 3.09 8.25 7.39
Ta100�5 0.00 3.97 1.76 4.98 4.62
Ta100�10 0.00 2.03 0.56 2.55 3.82
Ta100�20 0.00 4.48 0.59 4.75 5.07
Average 0.01 4.68 2.22 7.38 5.80

Table 12
Comparison results of the average RPD values (w1¼0.5).

Problem RPD

DTLBO-II hGA IG ILS PSO

Ta20�5 0.00 1.27 1.75 4.10 2.40
Ta20�10 0.00 2.10 1.70 4.55 3.14
Ta20�20 0.00 0.55 1.22 2.06 2.78
Ta50�5 0.00 7.08 6.00 5.22 6.93
Ta50�10 0.00 5.47 3.66 1.39 4.24
Ta50�20 0.00 3.92 2.07 1.21 2.30
Ta100�5 0.00 2.05 1.77 0.62 1.54
Ta100�10 0.90 2.11 2.99 0.00 2.16
Ta100�20 0.12 1.52 1.58 0.00 0.98
Average 0.11 2.90 2.53 2.13 2.94

Table 13
Comparison results of the best RPD values (w1¼0.9).

Problem RPD

DTLBO-II hGA IG ILS PSO

Ta20�5 0.00 0.39 0.56 1.30 0.70
Ta20�10 0.00 0.00 0.52 1.69 0.43
Ta20�20 0.02 0.00 0.34 0.51 0.12
Ta50�5 0.00 8.51 8.12 11.38 9.93
Ta50�10 0.00 9.74 6.62 11.04 9.67
Ta50�20 0.00 8.82 4.76 9.40 6.82
Ta100�5 0.00 4.23 1.31 4.55 3.27
Ta100�10 0.00 2.49 1.58 3.55 3.50
Ta100�20 0.00 2.55 0.72 3.84 2.60
Average 0.00 4.08 2.72 5.25 4.11

Table 14
Comparison results of the average RPD values (w1¼0.9).

Problem RPD

DTLBO-II hGA IG ILS PSO

Ta20�5 0.00 0.41 0.88 0.66 1.24
Ta20�10 0.00 0.26 0.58 0.90 0.76
Ta20�20 0.00 0.20 0.24 0.34 0.38
Ta50�5 0.00 5.20 3.78 4.23 5.92
Ta50�10 0.00 7.67 5.45 4.96 7.97
Ta50�20 0.00 5.99 2.46 3.11 5.74
Ta100�5 0.00 3.11 1.57 1.14 2.96
Ta100�10 0.00 2.38 2.22 0.54 2.58
Ta100�20 0.00 1.76 1.23 1.30 1.56
Average 0.00 3.00 2.05 1.91 3.23

Table 15
Comparisons of the average computational times.

Problem RPD

DTLBO-II hGA IG ILS PSO

Ta20�5 0.34 0.80 1.96 0.02 0.55
Ta20�10 0.44 0.55 2.54 0.11 0.77
Ta20�20 0.75 1.10 2.03 0.13 1.04
Ta50�5 20.10 8.29 12.46 1.45 5.65
Ta50�10 23.17 10.57 12.46 2.13 5.64
Ta50�20 25.07 11.95 12.03 2.66 5.73
Ta100�5 25.62 12.45 12.92 1.56 3.39
Ta100�10 32.01 15.02 8.96 1.92 3.77
Ta100�20 41.12 15.44 10.01 1.62 4.83
Average 18.74 8.46 8.37 1.29 3.48
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6.5. Comparisons with other algorithms for five types of disruptions

To the best of our knowledge, there is not any present algorithm
for solving the flowshop rescheduling problem while considering the
five disruption events that are discussed above. Therefore, to make
further detailed comparisons with the present algorithms, we coded
the following four efficient algorithms: hGA by Ruiz and Maroto
(2006), IG by Katragjini et al. (2013), ILS by Dong et al. (2009), and
PSO by Liao et al. (2007). The parameters for the compared algorithms
are set to the same values as in the literature, except that the stop
condition is set to 50 s.

To make detailed comparisons, we tested each compared
algorithm while considering all of the three different importances
in the two objectives. In other words, for each compared algo-
rithm, we took three independent runs for w1¼0.1, 0.5, and 0.9,
respectively. Tables 9 and 10 give the comparison results of the
best and average RPD values, respectively, in the case in which the
weight coefficient value (w1) was set to 0.1, which means that we
give more importance to the instability objective. Tables 11 and 12
report the comparison results of the best and average RPD values,
respectively, where w1 is set to 0.5 for the same importance in the
two objectives. Last, Tables 13 and 14 tell the comparison results

for the best and average RPD values, respectively, where w1 is set
to 0.9 for more importance in the first makespan objective. In the
six comparison tables, the first column gives the problem name,
and the following five columns report the RPD results that were
collected by the five compared algorithms, i.e., DTLBO-II, hGA, IG,
ILS, and PSO, respectively.

It can be concluded from Table 9 that (1) for solving the first three
groups of benchmarks with relatively small scales, on average,
DTLBO-II performs the best among the five compared algorithms.
The hGA algorithm can obtain the optimal result for solving
“Ta20�20”, which is slightly better than the proposed algorithm;
(2) for solving medium-scale problems that have 50 jobs, DTLBO-II
obtains all of the optimal values, which is obviously better than the
other compared algorithms; (3) for solving the last three groups of
instances, which have relatively large scales, DTLBO-II also shows
superior performance compared with the other three algorithms. At
the same time, IG performs slightly worse than DTLBO-II when
solving the last three groups of instances, which is better than the
other three compared algorithms, i.e., hGA, ILS, and PSO; (4) from the
last row in the table, we can see that, on average, DTLBO-II is the best
algorithm among the five compared algorithms, and the other
algorithms are IG, hGA, PSO, and ILS, respectively.
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Fig. 9. Convergence curve for one instance of “Ta20�5”.

Fig. 10. Convergence curve for one instance of “Ta100�20”.
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For considering the average performance in Table 10, we can see
that (1) on average, DTLBO-II obtains eight optimal values for the
given nine groups of benchmarks, except for “Ta100�10”, which is
slightly worse than the result from ILS; and (2) from the last line in
the table, we can see that, on average DTLBO-II performs the best.
The other algorithms are ILS, IG, PSO, and hGA. The above compar-
ison results verify the robustness of the proposed algorithm.

Tables 11 and 13 give the comparison results in which more
importance is given to the makespan objective. It can be concluded
from the two tables that (1) DTLBO-II can obtain eight optimal
solutions out of the nine groups of benchmarks, which verifes the
efficiency of the proposed algorithm; and (2) on average, when
considering the searching ability, DTLBO-II is the best among the
five compared algorithms. The other algorithms are IG, hGA, PSO,
and ILS. It can be seen from Tables 12 and 14 that, when considering
the average performance in which more importance is given to the
first objective, DTLBO-II shows the best among the five compared
algorithms, which further verifies the robustness of the proposed
algorithm.

Table 15 gives the comparisons of the average computational
times consumed by the five compared algorithms. It can be seen
from Table 15 that (1) when solving the three groups of small-scale
instances, DTLBO-II gives better performance than hGA, IG, and PSO,
which shows that the proposed algorithm holds a better conver-
gence performance; and (2) when solving the medium and large-
scale problems, the proposed algorithm consumes more than 20 s,
which is obviously larger than the other compared algorithms.
However, the solutions that were obtained by the proposed algo-
rithm are obviously better than the results of the other compared
algorithms. Considering the results performance and the computa-
tional times, we can conclude that the proposed algorithm captures
a balance between the exploitation and exploration ability.

To further verify the convergence ability of the proposed
algorithm, we select two instances, which are from the first group
and the last group, to make detailed comparisons on the conver-
gence performance. Figs. 9 and 10 report the convergence com-
parisons for the two instances. It can be concluded from the two
figures that (1) when solving the small-scale instance, the pro-
posed algorithm converges to an optimal result quickly, which is
similar to the IG algorithm and better than the other compared
algorithms; and (2) when solving the large-scale instance, DTLBO
is the algorithm that obtains the best result among the five
algorithms, while IG and PSO quickly converge to a relatively
worse result. Figs. 9 and 10 further verify that the proposed
algorithm captures a balance between the exploration and exploi-
tation ability.

6.6. Experimental analysis

In the proposed algorithm, we developed two types of teaching
phase heuristics, named TP-I and TP-II, respectively, and two types of
learning phase heuristics, namely LP-I, and LP-II, respectively. In TP-I
and LP-I, the procedure to repair the newly-generated learner discussed
in Section 4.1.4 consumed the main computational resources with the
computational time complexity ofO(nm). In TP-II and LP-II, the function
MIG_localSearch is the main factor and has the computational time
complexity of O(n3m). To further decrease the computational times that
are consumed in the MIG_localSearch function, we limit the number
of candidate insert positions in the modified IG-based local search
procedure. The learning process during the teaching phase can improve
the exploitation and exploration ability of the learner, while the
learning phase can further improve the efficiency of each learner in
the population. Through the above two phases, the proposed algorithm
shows better performance in solving both the small- and larger-scale
flowshop rescheduling problems.

7. Conclusions

In this study, we proposed a discrete version of TLBO for solving
flowshop rescheduling problems. In the proposed algorithms, a
detailed implementation for the teaching and learning phases is
investigated. In the teaching phase, by learning the difference
between the teacher and the mean result of the current popula-
tion, each learner can improve both the solution quality and the
exploration ability. In the learning phase, by learning from the
other learners and applying the modified IG-based local search
function, each learner can further improve the performance. Five
types of disruptions are simultaneously considered in the pro-
posed algorithms. Experimental comparisons with different ver-
sions of DTLBO and other efficient algorithms verify the efficiency
and effectiveness of the proposed algorithm. Future work is to be
mainly focused on the following issues: (1) Apply the proposed
algorithm for solving rescheduling problems in hybrid and flexible
environments; and (2) Develop a fast evaluation method for multi-
objective flowshop rescheduling problems to further decrease the
computational complexity of the proposed algorithm.
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