
Knowledge-Based Systems 72 (2014) 28–36
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Solving the steelmaking casting problem using an effective fruit fly
optimisation algorithm
http://dx.doi.org/10.1016/j.knosys.2014.08.022
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding authors at: State Key Lab of Digital Manufacturing Equipment &
Technology in Huazhong University of Science & Technology, Wuhan, 430074, PR
China. Tel.: +86 18606356701.

E-mail addresses: lijunqing.cn@gmail.com (J.-q. Li), panquanke@gmail.com
(Q.-k. Pan).
Jun-qing Li a,b,⇑, Quan-ke Pan d,⇑, Kun Mao a, P.N. Suganthan c

a College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
b State Key Laboratory of Synthetic Automation for Process Industries, Northeastern University, ShenYang 110819, PR China
c Nanyang Technological University, Singapore 639798, Singapore
d State Key Lab of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology, Wuhan, 430074, PR China
a r t i c l e i n f o

Article history:
Received 7 February 2014
Received in revised form 11 August 2014
Accepted 28 August 2014
Available online 6 September 2014

Keywords:
Hybrid flow shop scheduling
Steelmaking casting problem
Fruit fly optimisation algorithm
Realistic scheduling problem
Neighbourhood structure
a b s t r a c t

This paper presents an effective fruit fly optimisation algorithm (FOA) to solve the steelmaking casting
problem. First, we model the realistic problem as a hybrid flow shop (HFS) scheduling problem with
batching in the last stage. Next, the proposed FOA algorithm is applied to solve the realistic HFS problems.
In the proposed algorithm, each solution is represented by a fruit fly. Each fruit fly first improves its status
through a well-designed smell search procedure. During the vision-based search procedure, the worst fruit
fly in the population will be induced by the best fruit fly found thus far to improve the exploitation ability of
the entire fruit fly population further. To enhance the exploration ability of the proposed algorithm, in each
generation, each fruit fly that has not updated its status during the last several iterations will be replaced by
a newly-generated fruit fly. The proposed algorithm is tested on sets of the instances that are generated
based on the realistic production. Moreover, the influence of the parameter setting is also investigated using
the Taguchi method of the design-of-experiment (DOE) to determine the suitable values for the key param-
eters. The results indicate that the proposed FOA is more effective than the four presented algorithms.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In modern manufacturing and production systems, production
scheduling plays an important role, which can obviously increase
the production efficiency and profit. The hybrid flow shop (HFS)
scheduling problem is one branch of the classical flow shop schedul-
ing problem (FSSP), which has been verified to be an NP-hard prob-
lem [1]. The HFS scheduling problem is harder than the FSSP because
of the addition of the consideration of parallel machine selection for
each job. In 1988, Gupta proved that HFS is also an NP-hard problem
[1]. Recent and comprehensive reviews on HFS can be found in [2,3].
The realistic HFS is a much more complex generalisation of the
traditional HFS, which has been applied in the paper industry, car-
pet-manufacturing industry, and tile industry [4]. Voss and Witt
considered a real-world multi-mode multi-project scheduling prob-
lem, in which the resources form a hybrid flow shop consisting of 16
production stages [5]. Ruiz et al. solved the realistic HFS problems
with skipped stages, sequence-dependent setup times, machine
lags, release dates, machine eligibility and precedence relationships
[6]. Behnamian et al. presented a Pareto-based random key genetic
algorithm for minimising the makespan and sum of the earliness
and tardiness of jobs [7]. Dugardin et al. focused on the multi-objec-
tive resolution of a re-entrant HFS [8]. More recently, Costa et al. pre-
sented a dual encoding-based meta-heuristic algorithm for solving a
constrained hybrid flow shop scheduling problem [9]. Figielska pro-
posed a heuristic for scheduling in a two-stage HFS with renewable
resources shared among the two stages [10]. Luo et al. studied the
HFS in an active environment, where family setup time and inconsis-
tent family formation were considered [11]. Wang et al. considered
the HFS in a solar cell industry, where dedicated machines and lot-
splitting were considered [12]. Chung and Liao solved the HFS by
an immunoglobulin-based artificial immune algorithm [13]. Chou
proposed a particle swarm optimisation (PSO) with cocktail decod-
ing method for the HFS problems with multi-processor tasks [14].
Yang solved the HFS with two stages and dedicated machines at
the first stage [15].

The steelmaking problem is one of the most complex realistic
HFS, which is accompanied by technological constraints of steel-
making. In the iron and steel industries, the steelmaking process
is usually the bottleneck and the crucial issue to improve the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.08.022&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.08.022
mailto:lijunqing.cn@gmail.com
mailto:panquanke@gmail.com
http://dx.doi.org/10.1016/j.knosys.2014.08.022
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36 29
productivity of the production system [16]. Xuan and Tang mod-
elled the steelmaking process as a complex HFS problem with
batch production at the last stage [17]. Tang et al. presented a
non-linear model based on the just-in-time (JIT) concept for
solving machine conflicts in steelmaking-continuous casting [18].
Atighehchian et al. investigated a novel iterative algorithm com-
bining ant colony optimisation (ACO) and non-linear optimisation
methods [19]. Missbauer et al. divided the scheduling task into
four sub-problems and presented a heuristic algorithm consisting
of three planning levels [20]. More recently, Tan and Liu studied
the problem to reduce the electricity cost and the associate pro-
duction cost [21]. Tang et al. investigated the slab reallocation
problem arising from operations planning in the steel industry by
a heuristic algorithm based on tabu search (TS) [22]. Xuan and Li
investigated the batch decomposition strategy by a mixed back-
ward and forward dynamic programming approach [23]. Pan
et al. proposed an efficient artificial bee colony (ABC) algorithm
for solving the steelmaking problem by assigning a different pen-
alty coefficient for three objectives, i.e., the average sojourn time,
and the earliness/tardiness penalty [4]. Mao et al. investigated
the HFS in the steelmaking-continuous casting process using a
Lagrangian relaxation approach [24].

Very recently, by mimicking the food search procedure from the
fruit fly swarm, a novel swarm optimisation algorithm named fruit
fly optimisation algorithm (FOA) was developed by Pan [25]. In the
canonical FOA, each fruit fly is the basic component of the fly pop-
ulation. Through two phases of search, i.e., smell-based search pro-
cess and vision-based search process [25–31], each fruit fly can
reach the optimal searching space in an acceptable computational
duration. To the best of our knowledge, there is no literature on
solving the steelmaking casting problem by using the FOA. The
steelmaking casting problem is an NP-hard combinatorial optimi-
sation problem with a large search space, which is difficult to solve
effectively by traditional methods [16–24]. FOA is applicable to the
steelmaking casting problem considered in this study for following
reasons: first, FOA has only a few parameters, which makes it easy
to be implemented; second, the application of FOA in financial dis-
tress [25], PID controller tuning [26], general regression neural net-
work optimisation [27], multidimensional knapsack problem [28],
web auction logistics service [29], semiconductor final testing
scheduling problem [30], and fractional order fuzzy-PID controller
for electronic throttle [31], has verified that FOA is applicable for
solving many types of scheduling problems and is also competitive
to other optimisation algorithms; third, similar to other intelligent
algorithms, such as genetic algorithm (GA) and PSO, FOA is an evo-
lutionary algorithm with a parallel search framework in which
many heuristics, meta-heuristics and operators can be embedded.
In addition, problem-dependent local search approaches can also
be easily incorporated into the search framework of the FOA to fur-
ther enhance exploitation ability, which makes it easy to apply to
solve real-world scheduling problems. Therefore, in this study,
we propose an improved FOA to solve the realistic HFS in steel-
making casting industries.

To the best of our knowledge, this is the first research work
aims to develop an effective fruit fly optimisation algorithm to
solve the steelmaking casting problem. The main contributions of
this study are as follows: (1) to enhance the balance of exploitation
and exploration ability, we design four neighbourhood structures
and a self-adaptive neighbourhood strategy; (2) to induce the
whole population to move to promising search spaces, we embed
well-designed smell-based search and vision-based search proce-
dures in the proposed algorithm; and (3) to further improve the
exploration ability of the proposed algorithm, we develop an effi-
cient exploration procedure. The rest of this paper is organised as
follows: Section 2 briefly describes the problem. Next, the canoni-
cal FOA is presented in Section 3. Section 4 presents the framework
of the proposed algorithm. Section 5 illustrates the experimental
results and compares to the presented performing algorithms from
the literature to demonstrate the superiority of the proposed algo-
rithm. Finally, the last section gives the concluding remarks and
future research directions.
2. Problem descriptions

Steelmaking process is a complex manufacturing operation in
modern iron and steel industries, which basically consists of three
consecutive stages, i.e., steelmaking, refining, and continuous cast-
ing, The main processes are as follows [4,24]: first, molten iron
from iron-making process enters a converter or electric arc furnace,
to reduce the undesired impurity contents. In this stage, a group of
molten iron is usually called a charge, which is processed in the
same converter or electric arc furnace. Second, the charge of mol-
ten steel is transferred into a refining furnace, which is called refin-
ing stage, where the impurity is further eliminated and the
required alloy ingredients are added. Third, the molten steel enters
the last stage, that is, the casting stage, where the liquid steel fol-
lows down from the tundish and enters a crystalliser. Finally, the
steel is solidified into slabs. The realistic constraint is that a set
of charges must be continuously processed in the same cast. To for-
mulate the problem model, we usually have the following
assumptions:

� There are many sub-stages in the refining stage, which
makes the steelmaking an n-stage problem.

� There are several identical parallel machines in each stage,
which can be selected by any charge processed through the
stage.

� All charges or jobs follow the same processing sequence,
that is, from the first stage to the last stage.

� In the last stage, a set of jobs are grouped into a pre-defined
cast to be continuously processed in the same caster, which
should not be interrupted.

� In the last stage, the setup time of a new cast is considered.
� Transfer times between stages are also considered.
� Each charge should flow through each stage, and select

exactly one machine in each stage.
� The processing time for each charge is pre-defined, deter-

ministic, and uninterrupted.

In this study, we model the multi-stage steelmaking scheduling
problem as an HFS problem with continuously casting in the last
stage. Similar to Refs. [4,24], the objective is to minimise the aver-
age sojourn time and the earliness/tardiness penalty, where the
sojourn time of a job is the duration between the completion time
in first stage and the starting time in the last stage. The detailed
mathematical model for the considered problem can be referred
in [4].

3. The canonical FOA

The fruit fly optimisation algorithm (FOA) is a new heuristic for
global optimisation that mimics the food finding behaviour of the
fruit fly [25]. Osphresis and vision are the two characteristics that
make the fruit fly superior to other species. The osphresis organs of
fruit flies can help them find all types of scents floating in the air,
while the vision organs help them find the food source after getting
close to the food location. The main steps of the canonical FOA are
given as follows [25–31].

Step 1. Randomly initialise the positions for a swarm of fruit
flies.



30 J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36
Step 2. For each fruit fly, perform steps 3 and 4.
Step 3. Change the current position at a random direction with a

random strength.
Step 4. Estimate the distance value between its current position

and the possible food source, and then compute the
judged value of smell concentration (Si), which is the
inverse of the distance.

Step 5. Evaluate the fitness value for each fruit fly, and then
select the best one with the optimal value as the current
best fruit fly and record the best position.

Step 6. Induce the whole swarm of fruit flies to fly to the best
position.

Step 7. If the stop condition is satisfied, stop the algorithm;
otherwise, go back to step 2.

4. The proposed algorithm

In this section, we provide the detailed implementation of the
proposed FOA algorithm, which includes the encoding and decod-
ing, the improved search operators, and the framework of the pro-
posed algorithm.

4.1. Encoding and decoding

Similar to Refs. [4,6], in the proposed algorithm, a permutation-
based representation is used. That is, each solution is represented
by a string of integers. Each integer in the string corresponds to a
charge number. Thus, the length of the string equals to n. Consider
an example problem with three stages and sixteen jobs. There are
seven machines in the production system. Each stage contains two
or three identical parallel machines, which have the same perfor-
mance capability for the same charge. The processing time of each
operation at each stage is given in Table 1. Suppose one solution is
represented by {0, 9, 1, 10, 2, 11, 3, 4, 12, 5, 13, 14, 6, 15, 7, 8},
which means that at the first stage, the scheduling sequence is J0,
J9, J1, J10, J2, J11, J3, J4, J12, J5, J13, J14, J6, J15, J7, and J8.

It is obvious that the above solution representation contains no
information about the machine assignment. In the proposed algo-
rithm, each job, when arriving at each stage except the last stage,
will be assigned to the first available machine in the current stage.
At the last stage, for considering the continuously casting condi-
tion, each charge to be included in the given cast must be pro-
cessed on the predefined machine. Therefore, in the proposed
algorithm, the decoding steps are given as follows:

Step 1. At the first stage, perform the following steps: (1) select
each charge one by one according to the sequence in the
solution representation; (2) assign each selected charge
to the first available machine; (3) schedule each charge
on the assigned machine.

Step 2. At the next stages except the last stage, when each
charge completes its task in the previous stage and is
transferred to the current stage, the first available
machine will be selected to process it.

Step 3. At the last stage, each charge is selected into the prede-
fined cast, and should be processed immediately or later
to adapt to the continuous casting.
Table 1
Processing times.

J0 J1 J2 J3 J4 J5 J6 J7

Stage1 47 41 46 46 39 41 41 38
Stage2 38 41 42 37 42 49 36 48
Stage3 42 48 37 43 41 37 38 37
The Gantt chart of one solution for the above example problem
is shown in Fig. 1. In the Gantt chart, each charge is represented by
a rectangle and numbered with the charge number. Each stage is
divided by a line. At the last stage, each charge should be continu-
ously processed in its assigned cast on the predetermined caster.
For example, charge O3, O4, and O5 are processed in the same cast
on M6.

4.2. Neighbourhood structures

In this study, considering the problem structure and the balance
of the exploration and exploitation ability, four neighbourhood
structures are proposed, which are given as follows:

� Single-swap structure, denoted by N1. (1) Randomly select
two charge numbers in the solution representation; (2)
swap the two selected charges in the scheduling string.

� Insert structure, denoted by N2. (1) Randomly select two
positions r1 and r2 in the solution representation, where
r1 < r2; (2) insert the charge at the position r2 before r1 in
the scheduling string.

� Multi-swap structure, denoted by N3. Similar to [4], per-
form the single-swap structure several times.

� Multi-insert structure, denoted by N4. (1) Randomly gener-
ate a limit number h between h1 and h2, where h1 and h2 are
the lower and upper bound of the loop number and are
experimentally set to 5 and 10, respectively; (2) perform
the following steps h times: randomly select one position
r in the solution representation, insert the element at the
positions r + 1 before the position r � 1. If r = 0, set r � 1
equal to n; if r = n, set r + 1 with 0.

4.3. A self-adaptive neighbourhood strategy

The neighbouring approaches, introduced in Section 4.2, have
different roles for the convergence capability or the population
diversity. To balance the exploration and exploitation capability
during the evolution, that is, to enhance the search ability while
holding population diversity and utilise different neighbourhood
structure in different stages, we introduce a self-adaptive strategy,
which is similar to [32,33]. The detailed steps of the proposed self-
adaptive strategy are given as follows.

Step 1. Set the function parameter, such as the length of the
neighbourhood vector Ns, and the refill probability Rp.

Step 2. Initialise a neighbourhood vector (named NV), with
length equals to Ns, by filling with a random neighbour-
hood structure taken from the structures discussed in
Section 4.2.

Step 3. Generate an empty wining neighbourhood vector
(named WNV), with length equals to Ns.

Step 4. After receiving a call for selection of a neighbourhood
structure, perform Steps 5 to 7.

Step 5. If NV is not empty, take the first neighbouring structure
from NV to generate a neighbouring solution of the cur-
rent one. If the new neighbouring solution is better than
the current solution, replace the latter with the former,
J8 J9 J10 J11 J12 J13 J14 J15

38 49 43 38 47 45 45 42
42 44 43 37 45 41 50 40
48 44 40 39 40 49 42 40



0 100 200 300 400 500 600 700

M1

M2

M3

M4

M5

M6

M7

O8O15O14O5O12O2O1O0

stage1
O7O6O13O4O3O11O10O9

stage1

O7O6O13O4O3O2O1O0

stage1

O7O6O13O4O3O2O1O0

stage2

O8O14O12O11O9

stage2
O15O5O10

stage2

O1O0 O2 O4O3 O5 O7O6 O8

stage2

O1O0 O2 O4O3 O5 O7O6 O8

stage3
O9 O10 O11 O12 O14O13 O15

stage3

Fig. 1. Gantt chart for the example problem.

J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36 31
and insert the corresponding neighbourhood structure
into WNV.

Step 6. If NV is empty and WNV is not empty, fill NV with the
elements of the current WNV. If the length of the new
NV is less than Ns, the empty positions will be filled as
follows: 75% is refilled from the WNV, and the remain-
ing 25% is refilled by a random selection from the four
neighbourhood structures explained in Section 4.2.

Step 7. If WNV is empty, the new NV will be filled as
follows: 50% from the latest NV, and the remaining
50% is randomly selected from the neighbourhood
structures.
4.4. Population initialisation

The FOA algorithm begins with a population of PS initial fruit
flies. A population with a high level of solution quality and diver-
sity is very crucial for the algorithm. In this study, we propose an
initialisation heuristic for steelmaking problem, which is given as
follows:

Step 1. Randomly generate a solution.
Step 2. Schedule each charge through the first stage to the last

stage.
Step 3. Sequence the resulting starting time for each charge

determined from the last step in a non-decreasing
order. Next, we obtain the solution representation that
is the same as the charge sequence in the order.

Using the above initialisation heuristic, we initialise the population
as follows:

Step 1. Generate a solution by using the above heuristic.
Step 2. Let counter Cnt = 1, perform the following steps until
Cnt = PS.
Step 3. Generate a solution in a random way and evaluate it. If

the newly-generated solution is not the same as any
individual in the current population, insert it into the
population and let Cnt = Cnt + 1; otherwise, discard it.

Step 4. Go back to step 3.

4.5. Smell-based search procedure

In FOA, each fruit fly utilises the smell-based search procedure
to perform the exploitation task, which is implemented as follows.

Step 1. For each fruit fly Si, perform the following steps for SN
times.

Step 2. Generate a neighbouring fruit fly around Si by using the
self-adaptive neighbourhood strategy discussed in
Section 4.3.

Step 3. Evaluate the newly-generated neighbouring solution.
Step 4. If the newly-generated neighbouring solution is better

than the best solution found so far, then replace the best
solution with the neighbouring solution; if the neigh-
bouring one is better than the current solution, and then
replace the latter with the former.

Step 5. Update the two neighbouring vectors NV and WNV.

4.6. Vision-based search procedure

In the canonical FOA, the vision-based search procedure is
used to induce the entire population to move to a better
searching space; therefore the whole swarm will improve their
searching ability. However, the vision-based search procedure
should consider the balance of exploitation and exploration abil-
ity. If the whole swarm flies to the same searching space, the
population will prematurely converge to local optima. In this
study, we propose an improved vision-based search procedure,
which can both improve the performance of the current popula-
tion and retain the diversity of the whole swarm. The detailed
steps are given as follows.

Step 1. For the entire population, performs steps 2 to 3.



32 J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36
Step 2. Sort the entire population in a non-decreasing order
according to their fitness values.

Step 3. Find the worst fruit fly in the current population, and
then replace it with the best fruit fly found thus far.

4.7. Exploration procedure

For solving large scale problems, the exploration ability of the
proposed algorithm is critical. If the algorithm lacks exploration
ability, the entire population will converge to a worse result and
a premature solution occurs. To avoid sticking to local optima, in
this study, we propose an exploration procedure in the proposed
FOA, which is given as follows.

Step 1. For each fruit fly Si, record the update iteration number
in a vector.

Step 2. In each generation, set the update iteration number for
each fruit fly as follows: if the fruit fly is updated by a
newly-generated neighbouring individual, set the
update iteration number to zero; otherwise, increase it.

Step 3. Sort each fruit fly in the current population according to
their update iteration numbers.

Step 4. Find the fruit fly with the update iteration number
greater than Ln and denote it as Mi. If there is more than
one satisfactory fruit fly, then randomly select one.

Step 5. For the best fruit fly found so far, perform the smell-
search procedure ten times by using the neighbourhood
discussed in Section 4.2. Replace Mi with the newly-
generated fruit fly.

4.8. The framework of the FOA algorithm

The detailed steps of the proposed FOA algorithm are as
follows:

Step 1. Initialisation phase.
Step 1.1. Set the system parameters.
Step 1.2. Initialise the population.
Step 2. Evaluate each fruit fly in the population.
Step 3. If the stopping condition is satisfied, stop the algorithm;

otherwise, perform steps 4 to 7.
Step 4. Perform the smell-based search procedure discussed in

sub-Section 4.5.
Step 5. Perform the vision-based search procedure discussed in

sub-Section 4.6.
Step 6. Perform the exploration procedure discussed in sub-

Section 4.7.
Step 7. Go back to step 3.

From the proposed framework, the main search procedures are
realised through steps 4 to 6. Step 4 is the smell-based search pro-
cedure, which performs the exploitation tasks for each fruit fly. The
vision-based search procedure is performed in step 5, which
induces the entire population towards a better searching space.
The exploration task is completed through the exploration proce-
dure. The proposed self-adaptive neighbourhood strategy further
enhances the balance of exploration and exploitation ability of
FOA, which makes the proposed algorithm applicable to solve the
steelmaking casting problem with a huge search space.

4.9. Computational complexity analysis

From the framework, we can see that the proposed FOA algo-
rithm contains three main procedures. Therefore, similar to refer-
ence [30], we also provide a computational complexity analysis
from the three procedures: (1) for the smell-based search proce-
dure, each fruit fly generates and evaluates SN neighbouring solu-
tions to perform the exploitation task. Therefore, the
computational complexity of the smell-based procedure is
O(PS � SN � nms), where n, m, and s represent the total number
of jobs, machines, and stages, respectively; (2) for the vision-based
search procedure, the computational complexity is O(PS ln PS) to
find the worst solution in the current population. Therefore, the
computational complexity of the vision-based procedure is
approximately O(PS lnPS); (3) for the exploration procedure, each
fruit fly should record the update iteration number, which con-
sumes O(PS). In addition, to sort the whole population consumes
O(PS lnPS). Meanwhile, the newly-generated fruit fly takes
O(nms). Therefore, the computation complexity of the exploration
procedure is approximately O(nms).

From the above computational complexity analysis, we can
conclude that the proposed FOA is acceptable and that the algo-
rithm could solve the real-world steelmaking casting problems
efficiently.

5. Numerical results

This section discusses the computational experiments used to
evaluate the performance of the proposed algorithm. Our algo-
rithm was implemented in C++ on an Intel Core i7 3.4 GHz PC with
16 GB of memory. The compared algorithms include hGA [34], GAS
[35], TSSCS [36], and ABC [4]. To make a fair comparison for solving
the realistic steelmaking casting problems, we coded the above
algorithms and adopted the parameter settings proposed in their
references, respectively, except the computational times for each
instance are set to 20 s. The best, worst, and average results of
experiments for the above 20 problems from 20 independent runs
were collected for performance comparisons. The performance
measure is relative percentage increase (RPI), which is calculated
as follows:

RPIðCÞ ¼ CcCb

Cb
� 100 ð1Þ

where Cb is the best solution found by all compared algorithms, and
Cc is the best solution collected by a given compared algorithm.

5.1. Experimental instances

In this study, we generate twenty problem instances, named
from ‘‘Case1’’ to ‘‘Case20’’, according to the practical situations of
the iron and steel production in a Baosteel complex, the largest
and most advanced iron and steel enterprise in China. The detailed
parameters are as follows:

� There are three main stages in the shop, i.e., the steelmaking
stage, the refining stage, and the continuous casting stage. To
make the problem closer to the realistic production, we
divide the refining stage into 1–3 sub-stages. Therefore, we
obtain 3–6 stages in the shop.

� There are 5–6 parallel converts in the steelmaking stage, 5–6
identical refining furnaces in the refining stage, and 5–6 con-
tinuous casters in the last stage.

� Each continuous caster processes 3–4 casts in each workday,
and each cast generally contains 2–6 jobs, which should be
processed continuously. That is, we consider a total of 15–
24 casts and a total of 120 charges or so in the shop.

� For each charge or job, the processing times in the steelmak-
ing, refining, and casting are in the ranges of [36–50].

� For each machine, the release time is not considered as a
technical capability.



Table 2
Combinations of the parameter values.

Parameter Level

1 2 3 4

PS 10 30 50 100
SN 1 3 5 10

1 2 3 4

2484

2486

2488

2490

2492

2494

2496

2498

PS

m
ea

n

1 2 3 4
SN

Fig. 2. Factor level trend.

Table 4
Comparison results of the RPI values for the best makespan (the minimum RPI values
are in bold).

Problem Scale hGA GAS TSSCS ABC FOA

Case1 3-62-16 8.13 2.32 1.30 0.00 0.77
Case2 3-58-17 1.76 2.54 3.02 0.00 0.08
Case3 3-68-16 0.00 1.54 2.15 0.27 0.87
Case4 3-90-15 3.58 3.45 2.55 0.39 0.00
Case5 3-84-18 5.74 4.42 6.13 7.51 0.00
Case6 4-79-23 0.23 0.47 1.10 0.00 0.15
Case7 4-67-23 2.98 0.81 1.03 0.41 0.00
Case8 4-70-22 1.77 2.38 2.64 1.82 0.00
Case9 4-104-22 8.26 3.67 2.73 2.86 0.00
Case10 4-77-22 4.07 2.70 2.18 3.04 0.00
Case11 5-78-28 0.76 0.10 0.00 0.51 0.21
Case12 5-91-27 1.56 0.69 0.79 0.89 0.00
Case13 5-73-26 1.76 0.01 0.77 0.77 0.00
Case14 5-72-26 1.72 1.46 1.74 0.00 0.26
Case15 5-91-28 2.08 0.47 0.00 1.02 1.39
Case16 6-99-33 1.92 0.00 2.81 1.86 1.22
Case17 6-103-32 0.38 0.00 0.41 0.36 0.03
Case18 6-98-34 0.72 0.41 0.15 0.00 0.12
Case19 6-79-33 0.65 0.71 1.37 0.19 0.00
Case20 6-88-33 3.91 0.21 0.65 0.92 0.00
Average 2.60 1.42 1.68 1.14 0.26

J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36 33
� The transfer times for each two consecutive stages are range
in [10–15].

� The setup time for each cast is set to 100.
� The predefined starting time of the first cast on each caster in

the continuous stage can be estimated by the sum of the pro-
cessing time and the transfer time of each charge related to
the cast.

5.2. Experimental parameters

The parameters for the self-adaptive neighbourhood strategy
are set according to the reference [33]: (1) The length of the neigh-
bourhood vector Ns is set to 10; (2) The refill probability Rp is set to
0.75.

Similar to Ref. [33], the number of iterations during which the
solution does not improve (Ln) is also set to 20. The remaining
two parameters are the population size (PS) and the size of neigh-
bouring in the smell-based search process (SN) for the FOA proce-
dure. The levels of the two parameters are given in Table 2. The
Taguchi method of DOE [37] is utilised to test the influence of these
two parameters on the performance of the proposed algorithm.
The tested instance is Case20. Because the two parameters are
set with four factor levels, an orthogonal array L16(42) is selected.
For each parameter combination, the proposed algorithm is run
20 times independently, and then the average makespan value
obtained by the proposed algorithm is collected as the response
variable (RV). Table 3 presents the response values of different
combinations of these two parameters. Fig. 2 shows the factor level
trend of the two parameters.

It can be seen from Fig. 2 that the proposed algorithm exhibits a
better performance under the two parameters with following levels:
PS with level 1 and SN with level 2. From Fig. 2, we can see that the
parameter SN is more critical than PS in the proposed algorithm.
A large value of SN means more computational resources consumed
in the smell-based search procedure, causing the algorithm to
lose the exploration ability. An excessively small value of SN means
the loss of exploitation ability of the algorithm. Therefore, to balance
the exploration and exploitation ability, the suitable value for the
key parameter SN is set to 3 in the proposed FOA. According to the
Table 3
Orthogonal array and RV values.

Experiment number Factor RV

PS SN

1 1 1 2492.02
2 1 2 2475.52
3 1 3 2511.98
4 1 4 2486.23
5 2 1 2494.05
6 2 2 2487.8
7 2 3 2491.07
8 2 4 2502.68
9 3 1 2505.16

10 3 2 2485.11
11 3 3 2496.95
12 3 4 2486.73
13 4 1 2493.93
14 4 2 2484.05
15 4 3 2495.66
16 4 4 2497.52
above analysis, the suitable values for the two considered parame-
ters are set to 10 and 3 for PS and SN, respectively.

5.3. Comparisons analysis

To solve the above twenty realistic steelmaking problems, we
implemented the four presented algorithms: hGA, GAS, TSSCS,
and ABC. Note that hGA is an efficient algorithm for solving HFS
problems, while GAS and TSSCS are the two algorithms considering
HFS with limited buffers, and ABC is the very recently presented
algorithm for solving the steelmaking scheduling problem. The
above four compared algorithms are efficient for solving HFS. For
each compared algorithm, we take 20 independent runs for each
instance. After each independent run, the best, worst, and average
values are collected to make detailed comparisons.

Table 4 lists the comparison results of the RPI values for the best
makespan obtained by each compared algorithm for each consid-
ered instance. There are seven columns in the table. The first col-
umn presents the instance name. The following column presents
the scale of the problem, in which the three numbers correspond
to the number of stages, charges, and parallel machines. The results
of the best RPI values obtained by the compared algorithms,



hGA GAS TSSCS ABC FOA

0

1

2

3

4

5

6

7

8

R
P

I

Fig. 3. Means and 95% LSD interval for the best values of the five compared algorithms (p-value = 0.0005).

Table 5
Comparison results of the RPI values for the worst makespan (the minimum RPI
values are in bold).

Problem Scale hGA GAS TSSCS ABC FOA

Case1 3-62-16 27.66 22.10 25.28 27.44 14.34
Case2 3-58-17 19.78 11.08 11.07 14.79 10.79
Case3 3-68-16 19.21 8.46 15.31 10.68 6.57
Case4 3-90-15 17.31 18.09 18.31 17.02 8.67
Case5 3-84-18 26.54 14.30 28.27 24.08 15.23
Case6 4-79-23 5.42 4.22 5.60 4.37 3.82
Case7 4-67-23 6.35 5.97 8.04 5.54 2.76
Case8 4-70-22 13.98 11.74 10.07 4.55 6.95
Case9 4-104-22 21.99 9.93 12.18 10.85 10.98
Case10 4-77-22 10.09 14.16 11.15 9.58 8.31
Case11 5-78-28 4.89 5.10 6.82 3.79 5.51
Case12 5-91-27 8.59 9.18 9.46 5.07 6.28
Case13 5-73-26 7.20 7.07 4.36 7.70 2.45
Case14 5-72-26 9.01 6.55 8.76 7.52 7.15
Case15 5-91-28 11.52 5.17 10.09 5.61 4.86
Case16 6-99-33 8.80 8.06 8.95 4.38 5.15
Case17 6-103-32 2.87 4.10 6.20 2.09 2.45
Case18 6-98-34 3.80 2.30 2.47 1.45 1.49
Case19 6-79-33 4.82 4.03 5.02 3.32 3.78
Case20 6-88-33 8.24 4.13 6.75 5.72 4.31
Average 11.90 8.79 10.71 8.78 6.59

Table 6
Comparison results of the RPI values for the average makespan (the minimum RPI
values are in bold).

Problem Scale hGA GAS TSSCS ABC FOA

Case1 3-62-16 16.15 9.01 11.15 8.81 4.97
Case2 3-58-17 7.86 6.53 6.53 5.13 4.95
Case3 3-68-16 10.24 4.83 7.90 4.71 3.67
Case4 3-90-15 9.44 9.81 9.23 4.00 3.21
Case5 3-84-18 13.53 8.40 13.08 15.94 6.13
Case6 4-79-23 2.22 2.35 3.00 1.70 1.55
Case7 4-67-23 4.82 2.87 4.20 2.16 1.69
Case8 4-70-22 5.97 5.05 5.73 3.27 3.69
Case9 4-104-22 12.61 6.95 6.37 6.80 3.37
Case10 4-77-22 7.56 6.68 6.69 5.76 4.08
Case11 5-78-28 3.18 2.38 4.70 1.59 1.77
Case12 5-91-27 4.34 3.26 4.44 2.45 2.59
Case13 5-73-26 3.93 2.66 2.49 2.64 0.91
Case14 5-72-26 5.20 4.29 4.82 3.80 3.39
Case15 5-91-28 6.74 3.00 4.33 3.08 2.68
Case16 6-99-33 5.28 4.10 4.47 2.97 2.96
Case17 6-103-32 1.62 1.88 2.09 1.02 0.69
Case18 6-98-34 1.91 1.06 1.44 0.86 0.62
Case19 6-79-33 2.95 2.60 3.17 1.61 1.73
Case20 6-88-33 5.65 2.01 2.65 3.18 2.01
Average 6.56 4.49 5.42 4.07 2.83

Table 7
Comparison results of the computational times (time unit: seconds, the minimum
values are in bold).

Problem Scale hGA GAS TSSCS ABC FOA

Case1 3-62-16 8.69 12.12 12.06 12.14 8.07
Case2 3-58-17 6.85 7.75 14.65 12.37 8.69
Case3 3-68-16 12.82 9.30 9.53 14.02 8.64
Case4 3-90-15 11.77 14.78 13.52 14.81 10.08
Case5 3-84-18 11.46 14.03 13.95 17.05 9.43
Case6 4-79-23 7.83 10.07 6.98 15.50 10.74
Case7 4-67-23 8.73 8.23 9.95 12.87 9.49
Case8 4-70-22 7.32 12.15 12.10 12.60 10.90
Case9 4-104-22 12.02 17.89 11.51 17.03 14.99
Case10 4-77-22 8.43 13.30 12.37 14.59 9.89
Case11 5-78-28 12.88 10.83 11.47 17.63 9.44
Case12 5-91-27 13.58 14.15 12.11 17.53 12.95
Case13 5-73-26 8.21 10.61 9.49 11.50 11.07
Case14 5-72-26 10.61 13.12 9.27 15.10 9.72
Case15 5-91-28 12.22 15.36 10.46 14.43 11.24
Case16 6-99-33 12.47 13.29 8.64 17.80 9.26
Case17 6-103-32 16.16 18.22 10.04 16.88 10.43
Case18 6-98-34 15.79 18.43 7.84 17.62 7.55
Case19 6-79-33 9.04 15.00 10.72 15.87 10.06
Case20 6-88-33 15.55 16.29 9.87 16.16 12.05
Average 11.12 13.25 10.83 15.17 10.23

34 J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36
including hGA, GAS, TSSCS, ABC, and FOA, are listed in the follow-
ing five columns. The last row in the table presents the average
value of the best RPI values obtained by each compared algorithm
for all of the twenty instances. It can be concluded from Table 4
that: (1) the FOA obtained ten best values out of twenty instances,
which is obviously better than the other four compared algo-
rithms; (2) the last row shows that the proposed FOA algorithm
obtained an average value with 0.26 for all of the twenty instances,
which is obviously better than the other four compared algorithms.
The following algorithms are ABC, GAS, TSSCS, and hGA.

To check whether the observed differences from the above table
is indeed significantly different, we also performed a multifactor
analysis of variance (ANOVA), where the five compared algorithms
are considered as factors. This method has been used to compare
different algorithms in [4,28,30], and among many others. Fig. 3
illustrates the means and the 95% LSD interval for the best values
of the five compared algorithms. In Fig. 3, a p-value close to zero
suggests that there is a statistically significant difference between
the proposed algorithm and the other four compared algorithms. It
can be concluded from Fig. 3 that the proposed FOA is significantly
better than the other four compared algorithms for the considered
problems.



2 4 6 8 10 12 14 16 18 20
2500

2550

2600

2650

2700

2750

2800

2850

Computational times

C
on

ve
rg

en
ce

 c
ur

ve

hGA
GAS
TSSCS
ABC
FOA

Fig. 4. Comparisons of the convergence curve for Case20.

J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36 35
Tables 5 and 6 present the comparison results of the RPI values
for the worst and average makespan obtained by the five compared
algorithms, respectively. From the two comparison tables, we can
conclude that: (1) in the worst situation, the proposed algorithm
obtains nine optimal values out of twenty instances; (2) in the
average situation, the FOA algorithm obtains sixteen optimal val-
ues out of twenty instances; (3) the average values for the worst
and average situations indicate that the proposed algorithm is bet-
ter than the other four compared algorithms, which verifies the
efficiency and robustness of the proposed algorithm.

Table 7 presents the comparisons of the computational times
consumed by the five compared algorithms for solving the given
instances. It can be seen from Table 7 that the proposed FOA
required the least average computational times among the five
compared algorithms. The following algorithms are TSSCS, hGA,
GAS, and ABC. Fig. 4 gives the comparisons of the convergence
curve for solving Case20. It can be concluded from Fig. 4 that the
proposed algorithm exhibits perfect convergence ability for solving
the large scale realistic HFS problem. Considering both the perfor-
mance and the computational times, it can be concluded that the
proposed FOA is superior to the other four compared algorithms
for solving steelmaking casting problems with different scales.
6. Conclusion

In this study, an effective fruit fly optimisation is proposed to
solve the realistic steelmaking casting problems. The main contri-
butions and innovations of the proposed FOA are as follows:

(1) This is the first research work on the application of the FOA
algorithm to solve the steelmaking casting problem.

(2) A self-adaptive neighbourhood strategy is embedded in the
proposed algorithm, which can enhance the balance of
exploitation and exploration ability.

(3) Well-designed smell-based search and vision-based search
procedures are embedded in the framework of FOA, which
can induce the whole population to move to promising
search spaces.

(4) An exploration procedure is utilised in the proposed FOA,
which can further improve the exploration ability of the
proposed algorithm.
This research work not only provides a powerful optimisation
algorithm for the HFS in steelmaking casting system, but it also
enriches the application of the FOA in real-world scheduling field.
In the proposed FOA framework, there exist only a few control
parameters; as a result it easy to embed some knowledge-based
rules and other heuristic or meta-heuristic strategies. From the
experimental results and analysis, it can be concluded that the pro-
posed FOA is suitable for solving the real-world scheduling prob-
lems in a static environment. However, in most realistic
production system, many disruption events will cause the solution
to be infeasible. Moreover, multi-objective constraints should also
be considered in the future work of FOA applications. Therefore,
the future work is to apply the proposed algorithm for solving
other potential realistic applications under multi-objective con-
straints and dynamic environments.
Acknowledgments

ThisresearchispartiallysupportedbyNationalScienceFoundation
of China 61174187, 51435009 and 61104179, Program for New
Century Excellent Talents in University (NCET-13-0106), Specialized
Research Fund for the Doctoral Program of Higher Education
(20130042110035),ScienceFoundationofLiaoningProvinceinChina
(2013020016), Basic scientific research foundation of Northeast
University under Grant N110208001 and N130508001, Starting
foundation of Northeast University under Grant 29321006, and IAPI
FundamentalResearchFunds(2013ZCX02).
References

[1] J.N.D. Gupta, Two-stage, hybrid flow shop scheduling problem, J. Oper. Res.
Soc. 39 (1988) 359–364.

[2] R. Ruiz, J.A. Vázquez Rodríguez, The hybrid flow shop scheduling problem, Eur.
J. Oper. Res. 205 (2010) 1–18.

[3] I. Ribas, R. Leisten, J.M. Framinan, Review and classification of hybrid flow shop
scheduling problems from a production systems and a solutions procedure
perspective, Comput. Oper. Res. 37 (2010) 1439–1454.

[4] Q.K. Pan, L. Wang, K. Mao, J.H. Zhao, M. Zhang, An effective artificial bee colony
algorithm for a real-world hybrid flowshop problem in steelmaking process,
IEEE Trans. Autom. Sci. Eng. 10 (2) (2013) 307–322.

[5] S. Voss, A. Witt, Hybrid flow shop scheduling as a multi-mode multi-project
scheduling problem with batching requirements: a real-world application, Int.
J. Prod. Econ. 105 (2) (2007) 445–458.

http://refhub.elsevier.com/S0950-7051(14)00322-0/h0005
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0005
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0010
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0010
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0015
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0015
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0015
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0020
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0020
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0020
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0025
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0025
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0025


36 J.-q. Li et al. / Knowledge-Based Systems 72 (2014) 28–36
[6] R. Ruiz, F.S. S�erifoğlu, T. Urlings, Modeling realistic hybrid flexible flowshop
scheduling problems, Comput. Oper. Res. 35 (4) (2008) 1151–1175.

[7] J. Behnamian, S.M.T. Fatemi Ghomi, M. Zandieh, A multi-phase covering
Pareto-optimal front method to multi-objective scheduling in a realistic hybrid
flowshop using a hybrid metaheuristic, Expert Syst. Appl. 36 (8) (2009) 11057–
11069.

[8] F. Dugardin, F. Yalaoui, L. Amodeo, New multi-objective method to solve
reentrant hybrid flow shop scheduling problem, Eur. J. Oper. Res. 203 (1)
(2010) 22–31.

[9] A. Costa, F.A. Cappadonna, S. Fichera, A dual encoding-based meta-heuristic
algorithm for solving a constrained hybrid flow shop scheduling problem,
Comput. Ind. Eng. 64 (4) (2013) 937–958.

[10] E. Figielska, A heuristic for scheduling in a two-stage hybrid flowshop with
renewable resources shared among the stages, Eur. J. Oper. Res. 236 (2) (2014)
433–444.

[11] H. Luo, A. Zhang, G.Q. Huang, Active scheduling for hybrid flowshop with
family setup time and inconsistent family formation, J. Intell. Manuf., doi:
10.1007/s10845-013-0771-9.

[12] L.C. Wang, Y.Y. Chen, T.L. Chen, C.Y. Cheng, C.W. Chang, A hybrid flowshop
scheduling model considering dedicated machines and lot-splitting for the
solar cell industry, Int. J. Syst. Sci., doi: 10.1080/00207721.2012.762557.

[13] T.P. Chung, C.J. Liao, An immunoglobulin-based artificial immune system for
solving the hybrid flow shop problem, Appl. Soft Comput. 13 (8) (2013) 3729–
3736.

[14] F.D. Chou, Particle swarm optimisation with cocktail decoding method for
hybrid flow shop scheduling problems with multiprocessor tasks, Int. J. Prod.
Econ. 141 (1) (2013) 137–145.

[15] J. Yang, A two-stage hybrid flow shop with dedicated machines at the first
stage, Comput. Oper. Res. 40 (12) (2013) 2836–2843.

[16] L. Tang, P.B. Luh, J. Liu, L. Fang, Steel-making process scheduling using
Lagrangian relaxation, Int. J. Prod. Res. 40 (1) (2002) 55–70.

[17] H. Xuan, L.X. Tang, Scheduling a hybrid flowshop with batch production at the
last stage, Comput. Oper. Res. 34 (9) (2007) 2718–2733.

[18] L.X. Tang, J.Y. Liu, A.Y. Rong, Z.H. Yang, A mathematical programming model
for scheduling steelmaking-continuous casting production, Eur. J. Oper. Res.
120 (2) (2000) 423–435.

[19] A. Atighehchian, M. Bijari, H. Tarkesh, A novel hybrid algorithm for scheduling
steel-making continuous casting production, Comput. Oper. Res. 36 (8) (2009)
250–2461.

[20] H. Missbauer, W. Hauber, W. Stadler, A scheduling system for the steelmaking-
continuous casting process. A case study from the steel-making industry, Int. J.
Prod. Res. 47 (15) (2009) 4147–4172.

[21] Y.Y. Tan, S.X. Liu, Models and optimisation approaches for scheduling
steelmaking-refining-continuous casting production under variable
electricity price, Int. J. Prod. Res. 52 (4) (2014) 1032–1049.
[22] L.X. Tang, J.X. Luo, J.Y. Liu, Modelling and a tabu search solution for the slab
reallocation problem in the steel industry, Int. J. Prod. Res. 51 (14) (2013)
4405–4420.

[23] H. Xuan, B. Li, Scheduling dynamic hybrid flowshop with serial batching
machines, J. Oper. Res. Soc. 64 (2013) 825–832.

[24] K. Mao, Q.K. Pan, X. Pang, T. Chai, A novel Lagrangian relaxation approach for a
hybrid flowshop scheduling problem in the steelmaking-continuous casting
process, Eur. J. Oper. Res. 236 (1) (2014) 51–60.

[25] W.T. Pan, A new fruit fly optimisation algorithm: taking the financial distress
model as an example, Knowl.-Based Syst. 26 (2012) 69–74.

[26] J. Han, P. Wang, X. Yang, Tuning of PID controller based on fruit fly
optimisation algorithm, Int. Conf. Mechatron. Autom. (ICMA) (2012) 409–413.

[27] H. Li, S. Guo, C. Li, J. Sun, A hybrid annual power load forecasting model based
on generalized regression neural network with fruit fly optimisation
algorithm, Knowl.-Based Syst. 37 (2013) 378–387.

[28] L. Wang, X.L. Zheng, S.Y. Wang, A novel binary fruit fly optimisation algorithm
for solving the multidimensional knapsack problem, Knowl.-Based Syst. 48
(2013) 17–23.

[29] S.M. Lin, Analysis of service satisfaction in web auction logistics service using a
combination of Fruit fly optimisation algorithm and general regression neural
network, Neural Comput. Appl. 22 (3–4) (2013) 783–791.

[30] X.L. Zheng, L. Wang, S.Y. Wang, A novel fruit fly optimisation algorithm for the
semiconductor final testing scheduling problem, Knowl.-Based Syst. 57 (2014)
95–103.

[31] W. Sheng, Y. Bao, Fruit fly optimisation algorithm based fractional order fuzzy-
PID controller for electronic throttle, Nonlinear Dyn. 73 (1–2) (2013) 611–619.

[32] J.Q. Li, Q.K. Pan, Chemical-reaction optimisation for flexible job-shop
scheduling problems with maintenance activity, Appl. Soft Comput. 12 (9)
(2012) 2896–2912.

[33] Q.K. Pan, M. Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial bee
colony algorithm for the lot-streaming flow shop scheduling problem, Inf. Sci.
181 (12) (2011) 2455–2468.

[34] R. Ruiz, C. Maroto, A genetic algorithm for hybrid flowshops with sequence
dependent setup times and machine eligibility, Eur. J. Oper. Res. 169 (2006)
781–800.

[35] V. Yaurima, L. Burtseva, A. Tchernykh, Hybrid flowshop with unrelated
machines, sequence-dependent setup time, availability constraints and
limited buffers, Comput. Ind. Eng. 56 (4) (2009) 1452–1463.

[36] X. Wang, L. Tang, A tabu search heuristic for the hybrid flowshop scheduling
with finite intermediate buffers, Comput. Oper. Res. 36 (3) (2009) 907–918.

[37] D.C. Montgomery, Design and analysis of experiments, John Wiley & Sons,
Arizona, 2005.

http://refhub.elsevier.com/S0950-7051(14)00322-0/h0030
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0030
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0030
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0035
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0035
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0035
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0035
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0040
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0040
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0040
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0045
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0045
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0045
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0050
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0050
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0050
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0065
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0065
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0065
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0070
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0070
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0070
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0075
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0075
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0080
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0080
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0085
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0085
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0090
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0090
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0090
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0095
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0095
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0095
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0100
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0100
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0100
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0105
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0105
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0105
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0110
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0110
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0110
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0115
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0115
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0120
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0120
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0120
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0125
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0125
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0130
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0130
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0135
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0135
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0135
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0140
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0140
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0140
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0145
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0145
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0145
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0150
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0150
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0150
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0155
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0155
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0160
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0160
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0160
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0165
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0165
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0165
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0170
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0170
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0170
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0175
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0175
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0175
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0180
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0180
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0185
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0185
http://refhub.elsevier.com/S0950-7051(14)00322-0/h0185

	Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm
	1 Introduction
	2 Problem descriptions
	3 The canonical FOA
	4 The proposed algorithm
	4.1 Encoding and decoding
	4.2 Neighbourhood structures
	4.3 A self-adaptive neighbourhood strategy
	4.4 Population initialisation
	4.5 Smell-based search procedure
	4.6 Vision-based search procedure
	4.7 Exploration procedure
	4.8 The framework of the FOA algorithm
	4.9 Computational complexity analysis

	5 Numerical results
	5.1 Experimental instances
	5.2 Experimental parameters
	5.3 Comparisons analysis

	6 Conclusion
	Acknowledgments
	References


