
Applied Mathematical Modelling 38 (2014) 1111–1132
Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
A discrete artificial bee colony algorithm for the multi-objective
flexible job-shop scheduling problem with maintenance
activities
0307-904X/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.apm.2013.07.038

⇑ Corresponding author at: State Key Laboratory of Synthetic Automation for Process Industries, Northeastern University, Shenyang 110819, P
Tel.: +1 5063528919.

E-mail addresses: lijunqing.cn@gmail.com (J.-Q. Li), panquanke@gmail.com (Q.-K. Pan).
Jun-Qing Li a,b, Quan-Ke Pan a,b,⇑, M. Fatih Tasgetiren c

a State Key Laboratory of Synthetic Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
b College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
c Industrial Engineering Department, Yasar University, Izmir, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 10 February 2012
Received in revised form 21 June 2013
Accepted 26 July 2013
Available online 19 August 2013

Keywords:
Flexible job-shop scheduling problem with
maintenance activities
Multi-objective optimization
Artificial bee colony algorithm
Tabu search
This paper presents a novel discrete artificial bee colony (DABC) algorithm for solving the
multi-objective flexible job shop scheduling problem with maintenance activities. Perfor-
mance criteria considered are the maximum completion time so called makespan, the total
workload of machines and the workload of the critical machine. Unlike the original ABC
algorithm, the proposed DABC algorithm presents a unique solution representation where
a food source is represented by two discrete vectors and tabu search (TS) is applied to each
food source to generate neighboring food sources for the employed bees, onlooker bees,
and scout bees. An efficient initialization scheme is introduced to construct the initial pop-
ulation with a certain level of quality and diversity. A self-adaptive strategy is adopted to
enable the DABC algorithm with learning ability for producing neighboring solutions in dif-
ferent promising regions whereas an external Pareto archive set is designed to record the
non-dominated solutions found so far. Furthermore, a novel decoding method is also pre-
sented to tackle maintenance activities in schedules generated. The proposed DABC algo-
rithm is tested on a set of the well-known benchmark instances from the existing
literature. Through a detailed analysis of experimental results, the highly effective and effi-
cient performance of the proposed DABC algorithm is shown against the best performing
algorithms from the literature.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Scheduling is one of the most important key issues in planning and controlling the manufacturing systems [1,2]. The
classical job-shop problem is one of the most difficult problems in this area. It is basically concerned with scheduling a
set of jobs through a set of machines in order to minimize a creation performance criterion such that each job is consisted
of a sequence of consecutive operations, each operation demands only one machine which is continuously available and can
process one operation at a time without interruption.

On the other hand, the classical JSP can be generalized into the flexible job shop scheduling problem (FJSP) where
two sub-problems are solved: the first one is called a routing sub-problem that assigns each operation to a machine
selected from any of a set of suitable machines, the second one is called a scheduling sub-problem consisting of
R China.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2013.07.038&domain=pdf
http://dx.doi.org/10.1016/j.apm.2013.07.038
mailto:lijunqing.cn@gmail.com
mailto:panquanke@gmail.com
http://dx.doi.org/10.1016/j.apm.2013.07.038
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm

1112 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
sequencing all the assigned operations on all machines in order to yield a feasible schedule to minimize a predefined
performance criterion. In the classical JSP, job routings are known in advance and each operation is performed on a
predefined machine. However, in the FJSP, each operation can be performed on any among a set of available machines.
Therefore, the FJSP is more difficult than the classical JSP due to the consideration of both job routing and job scheduling.
The general JSP is strongly NP-hard, while the FJSP is a much more complex version of the JSP, so the FJSP is strongly NP-
hard [3]. Due to the complexity of the FJSP, no exact method has so far been developed to tackle the problem within a rea-
sonable amount of time [2]. Thus, meta-heuristic algorithms have become a practical tool for solving this problem. For the
FJSP with makespan criterion, tabu search (TS) has been proved to an efficient algorithm such as in Brandimarte [4],
Mastrolilli et al. [5], Fattahi et al. [3], Fattahi et al. [6], Ennigrou and Ghedira [7], Li et al. [8], and Bozejko et al. [9], whereas
the genetic algorithm (GA) has also been applied by many researchers, such as Kacem et al. [10], Ho et al [11], Pezzella et al.
[12] and Gao et al. [13]. The particle swarm optimization (PSO) has also been investigated by Xia and Wu [14], Gao et al. [15],
Liu et al. [16] and Zhang et al. [17]. In addition to the above, some other meta-heuristics have been introduced for the prob-
lem on hand such as the parallel variable neighborhood search (PVNS) algorithm [18], the knowledge-based ant colony opti-
mization (KBACO) algorithm [19], the artificial immune algorithm (AIA) [2], and the climbing depth-bounded discrepancy
search (CDDS) algorithm [20]. Recently, Wang et al. [21] proposed an effective artificial bee colony (ABC) algorithm for
solving the single-objective FJSP, where different crossover and mutation approaches are conducted, and local search based
on moving critical operations is also embedded.

Unlike the FJSP with a single objective, the FJSPs with multiple objectives have attracted attention by the researchers very
recently. For example, Kacem et al. [22] proposed a hybrid approach combining the GA with a local search (AL + CGA). Xia
and Wu [14] developed a hybrid method employing PSO with the simulated annealing (SA). Tay and Ho [23] developed a
genetic programming with evolving dispatching rules. Gao et al. [13] provided a hybrid GA (hGA). Xing et al. [24,25] pre-
sented some local search algorithms, too. Zhang et al. [17] introduced a hybrid PSO with a TS algorithm. Li et al. [26] inves-
tigated the TS algorithm with some efficient neighborhood structures (HTSA).

Most of the literature for the multiple-objective FJSPs adopts the aggregation approach where a deterministic weight is
assigned to each objective and these objectives are aggregated into a single objective. The drawback of the above approach is
to generate only a single solution at each run. Thus, little information can be provided to the decision maker about the qual-
ity of each performance criterion. The Pareto-based approach has recently become a practical tool for solving the multi-
objective optimization problems [27]. Kacem et al. [22] proposed a Pareto-based algorithm which combines evolutionary
algorithms with fuzzy logic. Tay and Ho [23] developed an approach called MOEA-GLS by combining the evolutionary algo-
rithm with a guided local search. Moslehi and Mahnam [28] conducted a Pareto approach using PSO with a local search. Very
recently, Li et al. [29] presented a discrete ABC for solving the multi-objective FJSP, where a crossover operator is developed
for information sharing among employed bees, the Pareto archive set is used to record the non-dominated solutions, a fast
Pareto set update function is designed, and several local search methods are introduced.

Nowadays, production scheduling and maintenance planning have been received considerable attention because of their
importance both in the fields of manufacturing and combinatorial research [30]. Schmidt [30] has outlined most of the lit-
erature related to deterministic scheduling problems with machine availability constraints until 1998 whereas Ma et al. [31]
surveyed the scheduling problems with deterministic machine availability constraints very recently. It can be concluded
from these survey papers that most of the literature considered machine availability constraints in solving single machine
problems, parallel machine problems, flow shop scheduling problems, and job shop scheduling problems. However, it was
pointed out that there are a few literatures considering the availability constraints in the FJSPs. Regarding the availability
constraints, Gao et al. [32] proposed a hybridization of GA with a local search algorithm for solving the multi-objective FJSPs
with preventive maintenance (PM) activities whereas Zribi et al. [33] considered the classical JSP with preventive mainte-
nance (PM) activities. Chan et al. [34] also studied the distributed flexible manufacturing system (FMS) with availability con-
straints. Wang and Yu [35] proposed a filtered beam search (FBS) for solving the single-objective FJSP with at most one
maintenance task for each machine.

By simulating the behavior of honey bee swarm intelligence, an artificial bee colony (ABC) algorithm is proposed by
Karaboga [36–38] to optimize multi-variable and multi-modal continuous functions. Experimental comparisons demon-
strated that performance of the ABC algorithm is competitive to other swarm intelligent algorithms. Due to its fewer control
parameters and ease of implementation, researchers have adopted the ABC algorithm to solve many practical optimization
problems [39]. In this study, we develop a novel discrete ABC (DABC) algorithm for solving the multi-objective FJSP with pre-
ventive maintenance activities. Both machine availability case and non-machine availability case are considered, respec-
tively. The main features of the proposed DABC are as follows: (1) several problem-related neighborhood structures are
designed; (2) a self-adaptive neighborhood structure strategy is conducted to balance the exploitation and exploration capa-
bility; (3) a TS-based local search heuristic is applied to enhance the exploitation performance; (4) a well-designed initial-
ization method is embedded; (5) a decoding strategy considering the maintenance tasks is developed; (6) a Pareto archive
set is constructed to record the non-dominated solutions. The rest of this paper is organized as follows: Section 2 briefly de-
scribes the problem formulation. Then, the artificial bee colony algorithm is presented in Section 3. The proposed DABC algo-
rithm is given in detail in Section 4 whereas Section 5 gives the experimental results and compares to the best performing
algorithms from the existing the literature to demonstrate the superiority of the DABC algorithm. Finally, Section 6 gives the
concluding remarks and future research direction.

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1113
2. Problem formulation

In the FJSP, there are a set of machines M = {M1,M2, . . . ,Mk, . . . ,Mm} and a set of jobs J = {J1, J2, . . . , Ji, . . . , Jn}. Each job consists
of a sequence of operations Oij, j = 1, . . . ,ni where Oij and ni denote the jth operation of job i and the number of operations
required for job i, respectively. Each operation Oij is to be processed on a machine denoted as Mk out of a set of available
machines called Mij # M.

Let PMkl be the lth maintenance task on machine k.
Let Lk be the total number of preventive maintenance tasks on machine k.
Let dkl be the duration of the maintenance task PMkl.
Let wE

kl; wL
kl

� �
be the time window associated with PMkl where wE

kl represents the earliest time of the window whereas wL
kl

is the latest time of the window.
Let zkl be the completion time of the maintenance task PMkl. Let pijk be the predefined fixed processing time of Oij on
machine Mk.
Let Cij be the completion time of Oij.
xijk ¼
1 if Oij is processed on machine Mk

0 otherwise

�
:

The mathematical model for the FJSP without maintenance activities can be referred to [8,40]. On the other hand, the
mathematical model for the FJSP with maintenance activities is defined as follows:
min f 1 ¼ max
16i6n
fcini
g; ð1Þ

min f 2 ¼
Xm

k¼1

Xn

i¼1

Xni

j¼1

xijk � pijk þ
Xm

k¼1

XLk

l¼1

dkl; ð2Þ

min f 3 ¼ max
16k6m

Xn

i¼1

Xni

j¼1

xijk � pijk þ
XLk

l¼1

dkl

()
; ð3Þ
s.t.
½ðzkl � dkl � cijÞ � xijk P 0� _ ½ðcij � zkl � pijkÞ � xijk P 0�; 8ði; jÞ ðk; lÞ; ð4Þ

wE
kl þ dkl 6 zkl 6 wL

kl; 8ðk; lÞ; ð5Þ

wE
kl;w

L
kl P 0; 8ðk; lÞ: ð6Þ
Constraint (4) forces the non-overlapping constraints between PM tasks and operations whereas constraint (5) ensures that
the PM tasks have to be completed within their time windows.

3. Artificial bee colony algorithm

3.1. The basic concept of ABC algorithm

In the basic ABC algorithm [36–39], there are two components: the foraging artificial bees and the food sources. The posi-
tion of a food source represents a possible solution to the optimization problem and the nectar amount of a food source cor-
responds to the quality or fitness of the associated solution. The basic ABC classifies foraging artificial bees into three groups,
namely, employed bees, onlookers, and scouts. An employed bee is responsible for flying to and making collections from the
food source the bee swarm is exploiting. An onlooker waits in the hive and decides on whether a food source is acceptable
or not. This is done by watching the dances performed by the employed bees. A scout randomly searches for new food
sources by means of some internal motivation or possible external clue. In the ABC algorithm, each solution to the problem
under consideration is called a food source and represented by an n-dimensional real-valued vector where the fitness of the
solution corresponds to the nectar amount of the associated food resource. As with other intelligent swarm-based ap-
proaches, the ABC algorithm is an iterative process. The approach begins with a population of randomly generated solutions
(or food sources); then, the following steps are repeated until a termination criterion is met [36–39]:

Initialize the foraging process.
Send the employed bees to exploit the discovered food sources.
Using the onlooker bees, choose the food sources and determine their nectar amounts.
Send scouts to search for new food sources.

1114 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
Remember the best food source found so far.
If a termination criterion has not been satisfied, go to step 2; otherwise stop the procedure and report the best food source
found so far.

3.2. Control parameters

There are three control parameters in the basic ABC algorithm, i.e., the number of food sources (SN), the number of cycles
through which a food source cannot be improved further and then the food source is assumed to be abandoned (limit), and a
termination criterion.

3.3. Initial population

In the basic ABC algorithm, the initial population is generated by a random approach. Let v i ¼ fv i1;v i2; . . . ;v ing represents
the ith food source in the population where n is the problem dimension. Each food source is randomly and uniformly gen-
erated as follows:
v ij ¼ vmin
ij þ vmax

ij � vmin
ij

� �
� r; j ¼ 1; . . . ; n; i ¼ 1; . . . ; SN; ð7Þ
where vmax
ij and vmin

ij are the lower and upper bounds for the dimension j, respectively and r is a uniform random number in
[0,1].

3.4. Employed bee phase

In the employed bee phase, the ith food source vi is given to the ith artificial employed bee, who generates a new neigh-
boring solution around the given food source as follows:
vnew;j ¼ v ij þ Uð�1;1Þ � ðv ij � vkjÞ; ð8Þ
where i 2 {1, . . . ,SN}, and k 2 {1, . . . ,SN} ^ k – i is randomly chosen food source. After obtaining the new solution vnew, it will
be evaluated and compared to vi, then the solution with the higher fitness value will be the winner.

3.5. Onlooker bee phase

The onlookers are the bees who wait in their hive for making decisions to select food sources after the employed bees
carrying the food source back. The onlooker bees use the probability values to select the food source for discovering prom-
ising regions in the search space. The winning probability value for each food source is calculated as follows:
pi ¼
fitiPSN
i¼1fiti

; ð9Þ
where fiti is the fitness value of the ith food source.

3.6. Scout bee phase

If a food source cannot be further improved through a limited cycles, then the food source is assumed to be abandoned
and a randomly generated food source will be replaced with it.

However, the above ABC algorithm, originally designed for the continuous nature of optimization problems, cannot be
used for discrete/combinatorial cases; therefore, in this work, some modifications to the above ABC algorithm have been
made for the discrete version, as described below.

4. The proposed DABC algorithm

4.1. Solution representation

In the proposed algorithm, each food source/solution contains two vectors, i.e., the routing vector and the scheduling vec-
tor. Each dimension in the routing vector represents the selected machine for the corresponding operation whereas each
dimension in the scheduling vector denotes the related job that their operations belong to. Each vector contains the total
number of operations denoted as opnum. For example, consider an FJSP instance with three machines and three jobs where
each machine has one maintenance task as shown in Table 1. In addition, Table 2 gives the operation processing time for the
problem. The solution representation for this example is given in Fig. 1.

In Fig. 1, the routing vector indicates the assigned machine for each operation. For example, M2 is selected for O21 whereas
M3 is selected for O32. On the other hand, the scheduling vector indicates processing sequence for all operations. Reading jobs
from left to right, the schedule of all operations can be found very easily, which is depicted in Fig. 2.

Table 1
Preventive maintenance tasks.

PM tasks Time window Duration (dkl)

wE
kl wL

kl

M1 PM11 0 13 3
M2 PM21 2 14 1
M3 PM31 0 20 2

Table 2
Operation processing time.

M1 M2 M3

J1 O11 4 5 –
O12 3 2 1
O13 7 9 2

J2 O21 8 3 5
O22 7 6 4
O23 7 3 2

J3 O31 1 2 3
O32 3 2 1

ijOOperation 11O 12O 13O 21O 22O 23O 31O 32O

kMachine 1 2 3 2 3 2 1 3

iJob 2 1 1 3 2 2 1 3

Fig. 1. Solution representation.

ijOOperation 11O 12O 13O 21O 22O 23O 31O 32O

kMachine 1 2 3 2 3 2 1 3

iJob 2 1 1 3 2 2 1 3

2jobSchedule 21O 22O 23O

1jobSchedule 21O 11O 12O 22O 23O 13O

3jobSchedule 21O 11O 12O 31O 22O 23O 13O 32O

Fig. 2. Sequence of operations.

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1115
4.2. Decoding with maintenance task

It is important to note that the solution representation given above contains no scheduling information for the mainte-
nance tasks. In this study, maintenance tasks are scheduled dynamically by using the following heuristics:

Schedule the maintenance tasks on each machine at the begin of their time window, that is, set zkl ¼ wE
kl þ dkl, for each

k 2 (1,m).
When scheduling an operation Oij on machine Mk, denote the possible start time and end time of Oij, without considering

the PM tasks, sij and cij, respectively.
If each maintenance task PMkl does not overlap with the operation Oij, then schedule Oij at duration [sij,cij]. Otherwise,

perform step 4.
If [sij,cij] is overlapped with a maintenance task PMkl, shift PMkl to the right as possible as to schedule Oij before PMkl. If Oij

can be schedule before PMkl, then schedule it. Otherwise, shift PMkl to the left as possible as compact, then schedule Oij after
PMkl.

Fig. 3 gives a Gantt chart for the example instance in Tables 1 and 2 with PM tasks.

M1

M2

O11

machine

t

PM task

M3

O31

O21 O12

O13

43 5 86 7

O23

10

O32O22

Fig. 3. Gantt chart for the example solution.

1116 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
4.3. Neighborhood structures

There are two types of neighborhood structures in the DABC algorithm. In the first one, neighboring solutions are gener-
ated from the routing vector by considering some workload rules whereas in the second one, neighboring solutions are gen-
erated from scheduling vector by applying some traditional swap, insert and reverse moves.

4.4. Neighborhoods for routing vector

The neighborhood structures for the routing vector are given as follows:
Random method denoted as Nr1. This neighborhood can be referred to [26], which is generated as follows:

Randomly select an operation with more than one candidate machines;
From the candidate machine set, randomly select another machine different with the current one for the selected
operation.

Top k � q most workload neighborhood denoted as Nr2. This neighborhood is generated as follows:

� Select top-k machines with relatively heavy workload denoted as Mk
t ;

� Randomly select q (1 6 q 6 k) machines form Mk
t denoted as Mq

k;
� For each machine Mq in Mq

k; randomly select an operation being operated on Mq denoted as Oij, select another machine Mk

from Mij which is not in Mk
t , and then schedule Oij on machine Mk.

Workload considered neighborhood denoted as Nr3.This neighborhood is generated by following steps:

� Randomly select an operation Oij with more than two candidate machines and denote the machine which is processing Oij

as Mo;
� Select a machine Mk from Mij different with Mo which satisfies one of the following condition:
� pijk < pijo, in this case, the total workload can be optimized;
� (Wo = f3) ^ (Wk + pijk < f3), where Wk means the workload of Mk, in this case, the maximal workload can be improved;
� Replace the current machine with Mk at the position of Oij.

4.5. Neighborhoods for scheduling vector

Swap neighborhood.
Randomly select two operations which do not belong to the same job;
Swap the two selected operations in the scheduling vector.
Insert neighborhood.
Randomly select two operations which do not belong to the same job;
Erase the second operation and then insert it before the first one.
Reverse neighborhood.
Randomly select two different positions in the scheduling vector;
Reverse each operation between the two positions, that is, the last one in the current scheduling vector become the first
one in the new vector while the first one in the pre-vector become the last one.

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1117
4.6. A self-adaptive strategy to produce neighboring solutions

A self-adaptive strategy is proposed in the proposed algorithm to utilize different neighborhood structures in different
stages. The proposed self-adaptive strategy, which is similar to the one in [39], is presented as follows: At the beginning,
two initial neighborhood structure vectors are defined as NVR for local search in routing vector and NVS for local search
in scheduling vector with their length equal to the number of neighboring solutions needed to search (numNS). These
two vectors are generated by filling them one by one randomly from the neighborhood structures explained before. Then
the algorithm is started. During the search process, neighboring solutions are generated by using the routing neighboring
approaches taken out from the NVR and the scheduling approaches selected from the NVS one by one, respectively. If the
new neighboring solution is a non-dominated one, the corresponding approaches will enter into the winning neighborhood
structure vectors called WNR for routing vector and WNS for scheduling vector, respectively. For the next iteration, the cur-
rent NVR and NVS will be filled with the elements of the current WNR and WNS, respectively. Meanwhile, the two vectors
WNR and WNS will be set empty for the following new generation. Once the length of the new NVR and NVS is less than
numNS, the empty positions will be filled as follows: 75% is refilled from the WNR and WNS, respectively, and then the rest
of 25% is refilled by a random selection from the neighborhood structures explained before. If the WNR or NVS is empty (this
may happen when the search is stuck at local optima), the new NVR or NVS will be filled as follows: 50% is refilled from the
latest NVR or NVS, and the rest 50% is randomly selected from the neighborhood structures explained before. The above pro-
cess is repeated until a termination criterion is reached. We refer to [39,40] for details of the procedure.

4.7. TS-based local search heuristic

The tabu search algorithm proposed by Glover [41] has been successfully applied to a large number of combinatorial opti-
mization problems [41–44]. In the proposed algorithm, TS was used to conduct a local search applied to the food sources
generated by neighboring structure. The main steps of the TS based local search denoted as TS_LocalSearch(s) is given as
follows:
Set the system parameters and set s as the current solution.

Set j = 0, perform steps 3 to 9 until j P TU where TU is the maximum number of iterations for which the external
PAS has not been improved.

For i = 1 numNS, perform sub-steps from 3.1 to 3.2.

Select the ith neighborhood structure from the NVR vector explained before.

Produce a neighboring solution by using the selected neighborhood structure and insert it in the queue denoted
as qNS.

For i = 1 to numNS, perform sub-steps from 4.1 to 4.2.

Select the ith neighborhood structure from the NVS vector explained before.

Produce a neighboring solution by using the selected neighborhood structure and insert it in the queue denoted
as qNS.

Apply the Pareto non-dominate sorting function barrowed from [45] to qNS and then select the solutions in the
first Pareto level front (denoted as C1) to update the Pareto archive set PAS. If the PAS is improved, then set j = 0,
otherwise, increase j by j + 1.

Update the corresponding winning neighborhood structure vector WNR or WNS with the winning
neighborhood structure if the corresponding neighboring solution is a non-dominated one.

Record each solution that has updated the PAS in a new vector called BS.

Select the best neighboring solution as the current solution satisfying one of the following conditions:

the solution in BS which is non-tabu;

if it does not exist, then select the solution in C1 which is non-tabu;

if both 8.1 and 8.2 do not exist, then select the first solution satisfying the aspiration rule in BS or C1. If there
exist more than one solution satisfying the above conditions, randomly select one of them as the current solution.

Update the tabu list by adding the selected neighboring solution and remove the oldest solution if the tabu list
is overflowed or the duration of the oldest solution in the tabu list exceeds the termination criterion TU.
4.8. Initial population

In order to construct the initial population, four priority/heuristic rules are employed for the routing vector. These are
operation minimum processing time rule (OPT) in [12], the longest processing time rule (LPT) in [8], the random rule,
and the workload considered rule (WCR). The adoption of a mixture of these four rules to produce the routing vector
may enrich the initial population to solve FJSP problems. In this study, 20% of the initial population was generated by
LPT, 20% by WCR, 20% by OPT, and 40% by the random rule.

1118 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
Regarding the scheduling vector, four priority rules are employed in the initial population. These are the random rule, the
most work remaining rule (MWR) in [4], the most number of operations remaining (MOR) rule in [12], and the shortest pro-
cessing time rule (SPT) in [4]. In this study, the initial population is constructed with a mixture of these four rules, i.e., 20% by
MWR, 20% by MOR, 20% by SPT, and 40% by the random rule.

Main steps of the WCR approach are given below whereas Fig. 4 shows an example of the WCR approach for the example
instance discussed in Section 4.1.
Create a vector to record the machine workload for each machine (hereafter called MW) with the length equals to m. Set
each element in MW to zero.
Randomly sequence each job and select them one by one to perform step 3.
For each selected job i in the queue, find the unscheduled operation with minimum processing time O�ij, then perform sub-
steps from 3.1 to 3.5.
Select each candidate machine Mkð1 6 k 6 m; Mk 2 MijÞ for operation Oij.
Find the most suitable machine Mk� which satisfies k� ¼minfpijk þMWk k 2 Mij

�� gwhere MWk denotes the value of kth ele-
ment in MW.
If more than one machine satisfies the above condition, select the one with minimum processing time for O�ij.
Add the processing time pijk� to the position k⁄ in MW.
Assign Mk� for processing O�ij.

4.9. Framework of the DABC algorithm

For multi-objective FJSPs in general, the makespan is typically the most important criterion and heavily affects the other
two objectives [46]. The size of the external Pareto archive set is in general relatively large for large scale instances which has
a significant impact on the convergence speed of the algorithm. In order to find the near-optimal solutions with relatively
small makespan values as early as possible, we propose a two-stage algorithm in this paper. In the first stage, TS-based local
search was utilized to carry out the traditional approach for solving the multi-objective FJSP. In other words, three perfor-
mance criteria were aggregated into a single objective by assigning a deterministic weight value to each objective [26], i.e.,
min f = w1f1 + w2f2 + w3f3. On the other hand, in the second stage, the Pareto-based DABC algorithm was integrated into the
proposed algorithm to solve the multi-objective FJSP.

The main steps of the proposed DABC algorithm are as follows:

Initialization phase.
Set the system parameters.
Generate the initial population by using the initial heuristics.
Apply the Pareto non-dominated sorting function, barrowed from [45], on the population. Then update the external Par-
eto archive set PAS by using the solutions in the first Pareto level front.
2Step2 3 1

Step3

0Step1 0 0
M1 M2 M3

Job sequence

J2
3 1 2 Operation sequence

Step3.1 0 0 0
7 3 2

M1 M2 M3

0 0 2
M2 M3M1

Step3.5 (O23, M3)

Step3.1 0 0 2
8 3 5

M1 M2 M3

0 3 2
M2 M3M1

Step3.5 (O21, M2)

Step3.1 0 3 2
7 6 4

M1 M2 M3

0 3 6
M2 M3M1

Step3.5 (O22, M3)

Step3
J3

1 2 Operation sequence

Step3.1 0 3 6
1 2 3

M1 M2 M3

1 3 6
M2 M3M1

Step3.5 (O31, M1)

Step3.1 1 3 6
3 2 1

M1 M2 M3

4 3 6
M2 M3M1

Step3.5 (O32, M1)

…
(O23, M3), (O21,M2), (O22, M3), (O31, M1), (O32, M1), (O12, M2), (O13, M3), (O11, M1)

Fig. 4. An example process for the workload considered rule.

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1119
If the termination criterion is satisfied, report the non-dominated solutions in the PAS; otherwise, perform the steps from
4 to 5.

First stage-tabu search based-local search

Perform the sub-steps from 4.1 to 4.4 until the termination criterion is satisfied.
Set parameters for the first stage TS- based local search.
Randomly select a non-dominated solution from the external PAS as the current solution s.
For the current solution, apply the TS-based local search, i.e., TS_LocalSearch(s).
If one of the following conditions satisfies, then perform step 5, otherwise, go back to step 4.2: the PAS has not been
improved through PU iterations;
the total number of iterations exceeds the maximum number of iterations TMAX.

Second stage-DABC-based search

Perform the steps from 6 to 9 until the termination criterion is satisfied.
Employed bee phase.
If the size of the PAS exceeds the number of employed bees, for each employed bee, randomly select a recently improved
solution, which must be different than the employed bees, from the external PAS; otherwise, put each employed bee on
each non-dominated solution in the PAS.
For each employed bee, perform the TS-based local for the chosen solution s, i.e., TS_LocalSearch(s).
If a non-dominated solution has not been improved through limit cycles, the corresponding employed bee becomes a
scout bee.
Onlooker bee phase.
Each onlooker bee randomly selects three non-dominated solutions from the PAS and selects the solution.
Which is improved most recently as the food source.
Each onlooker bee, perform the TS-based local for the chosen solution s, i.e., TS_LocalSearch(s).
Scout bee phase.
From the PAS, randomly select a member solution as the food source.
Each scout bee, perform the TS-based local for the chosen solution s, i.e., TS_LocalSearch(s).
If one of the following conditions satisfies, report the non-dominated solutions in the external PAS: the PAS has not been
improved through PU iterations;
the total number of iteration exceeds the maximum number PMAX. otherwise, go back to step 6.
5. Computational results

This section discusses the computational results to evaluate the performance of the proposed DABC algorithm with the
best performing algorithms from the existing literature. The DABC algorithm was written and implemented in C++ on an
AMD Athlon 64 X2 Notebook computer running at Dual-Core 1.7 GHz with 1 G memory.
5.1. Parameter setting

Each instance can be characterized by the following parameters: number of jobs (n), number of machines (m), and the
number of operations (op_num). The other parameters are given as follows:

Number of food sources: SN = 10.
Number of employed bees: NEB = 10.
Number of onlookers: NOB = 10.
Number of scout bees: NSB = 2.
Number of cycles through which a food source cannot be further improved: limit = 10.
Number of neighboring solutions needed to search: NumNS = 3n.
For top k � q most workload neighborhood structure, k = 3 and q = 2.
For the first stage TS heuristic, the weight values for the aggregated objective functions are set to w1 = 3/7, w2 = 1/7 and

w1 = 3/7 for f1, f2 and f3, respectively.
The maximum duration of the TS-based local search for which the external PAS has not been improved: TU = 2n.
The maximum number of consecutive iterations without improvement of the PAS: PU = 30.
The maximum number of iterations TMAX = 150 and PMAX = 300.
Tabu tenure: TTENURE = op_num/2.
Tabu list length: TLENGTH = op_num/2.

Table 3
PM tasks of 8 � 8 �m.

PM11 PM21 PM31 PM41 PM51 PM61 PM71 PM81

Time window wE
kl

1 3 5 6 0 3 1 3

wL
kl

10 9 15 17 10 16 14 13

Duration 4 3 5 3 3 5 3 4

Table 4
PM tasks of 10 � 10 �m.

PM11 PM21 PM31 PM41 PM51 PM61 PM71 PM81 PM91 PM10,1

Time window wE
kl

0 1 0 0 2 0 0 0 0 0

wL
kl

4 7 6 5 7 6 5 7 5 6

Duration 2 1 1 2 1 2 2 3 2 3

Table 5
PM tasks of 15 � 10 �m.

PM11 PM21 PM31 PM32 PM41 PM51 PM61 PM71 PM81 PM82 PM91 PM10,1

Time window wE
kl

1 2 0 3 0 0 0 2 0 6 1 2

wL
kl

5 7 3 11 10 8 6 7 5 11 5 8

Duration 1 1 1 2 3 2 1 1 1 1 1 1

1120 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
5.2. Comparisons of the three FJSPs with PM tasks

In this section, we employed three representative FJSP instances with PM tasks, denoted as n �m �m, ranging from 27
operations to 56 operations in [32,35]. The small scale instance 8 � 8 �m and the medium scale instance 10 � 10 �m have
exactly one PM activity on each machine in the planning horizon whereas the large scale instance 15 � 10 �m has two PM
tasks for two machines and one PM task for the others. The non-fixed availability constraint is set as the same as in [32,35]
and the time window and duration of maintenance tasks are shown in Tables 3–5, respectively.

Two schedules for the 8 � 8 �m instance obtained by the DABC algorithm are shown in Figs. 5 and 6, respectively. In
addition, Figs. 7 and 8 show another two schedules for the 10 � 10 �m instance, respectively whereas the schedule for
the 15 � 10 �m instance is given in Fig. 9. In these five figures, the pair of numbers (in the form of [job, operation]) inside
the blocks is the operation to be processed on the corresponding machine. The two numbers just below the block represent
the start time and end time of the operation, respectively. The block marked with ‘‘PM’’ denotes the maintenance task for the
corresponding machine.

Table 6 shows the comparisons on these instances with the other two algorithms, i.e., the hGA in [32] and the FBS-based
algorithm in [35]. The first column in Table 6 gives the compared algorithms. Following observations can be derived from
Table 6:

For solving the 8 � 8 �m and 10 � 10 �m instances, the DABC algorithm can obtain two non-dominated solutions
whereas the other algorithms obtained only a single solution;

The DABC algorithm is also competitive to the hGA for solving the largest instance 15 � 10 �m even with having more
than one maintenance tasks.
5.3. Comparisons of the five Kacem instances

In this section, we compare to the best performing algorithms from the existing literature on the five Kacem instances
[10,22]. These algorithms compared are summarized below:

The PSO + SA algorithm by Xia et al. [14],
The PSO + TS algorithm by Zhang et al. [17],
The X-LS by Xing et al. [24],
The HTSA algorithm by Li et al. [26],
The P-ABC algorithm by Li et al. [29],
And the MOPSO + LS algorithm by Moslehi et al. [28].

The computational results are given in Table 7. It can be seen from Table 7 that DABC algorithm is more efficient than the
other approaches for solving the five Kacem instances. For example, for solving the 8 � 8, 10 � 10, and 15 � 10 instances, the

0 2 4 6 8 10 12 14 16 18

M1

M2

M3

M4

M5

M6

M7

M8

(5,1)

0 3

(8,1)

3 5

PM1

95

(3,3)

9 10

(4,1)

0 1

(1,1)

1 4

PM2

4 7

(8,2)

117

(6,3)

6111

(6,1)

0 1

(2,1)

1 4

(7,1)

4 6

(4,3)

6 8

PM3

318

(3,2)

62

(2,2)

6 8

(5,2)

218

PM4

12 15

(7,3)

15 18

PM5

0 3

(1,2)

4 7

(2,4)

319

(8,4)

15 16

(4,2)

61

PM6

116

(5,3)

12 14

(1,3)

14 16

(3,1)

0 2

PM7

2 5

(2,3)

8 9

(5,4)

14 17

(6,2)

51

PM8

95

(7,2)

419

(8,3)

14 15

Fig. 5. Optimal solution of the 8 � 8 instance with maintenance constraint (f1 = 18, f2 = 103, f3 = 16).

0 2 4 6 8 10 12 14 16 18

M1

M2

M3

M4

M5

M6

M7

M8

(8,1)

0 2

(5,1)

2 5

PM1

95

(3,3)

9 10

(4,1)

0 1

PM2

3 6

(6,3)

116

(8,2)

5111

(6,1)

0 1

(2,1)

1 4

(7,1)

4 6

(4,3)

6 8

PM3

318

(3,2)

62

(2,2)

6 8

PM4

8 11

(7,3)

14 17

(1,1)

0 3

(1,2)

3 6

PM5

7 10

(2,4)

6121

(8,4)

16 17

(4,2)

61

PM6

116

(5,3)

11 13

(1,3)

13 15

(3,1)

0 2

PM7

2 5

(5,2)

115

(2,3)

11 12

(5,4)

13 16

(6,2)

51

PM8

95

(7,2)

419

(8,3)

15 16

Fig. 6. Optimal solution of the 8 � 8 instance with maintenance constraint (f1 = 17, f2 = 105, f3 = 15).

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1121
DABC algorithm either obtains superior solutions or gets richer (non-dominated and more than one) optimal solutions than
the PSO + SA algorithm. In comparison with the very recently published PSO + TS algorithm, the DABC algorithm again ob-
tains much richer (non-dominated and more than one) optimal solutions than the PSO + TS algorithm, especially for the large
scale instances such as instances 10 � 10 and 15 � 10.

In addition to the above, we carried out a detailed comparison between DABC and X-LS on the five instances. Table 7
shows that our approach obtains dominated solutions in solving the 8 � 8 and 10 � 10 instances. For other three instances,
i.e., 4 � 5, 10 � 7, and 15 � 10, the DABC algorithm also obtains richer optimal solutions or the same solutions. In comparison

0 1 2 3 4 5 6 7 8 9

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

(2,1)

20

PM1

42

(7,1)

4 5

(1,1)

5 6

(4,2)

31

(8,2)

63

PM2

6 7

(8,3)

97

(10,1)

0 1

PM3

1 2

(7,2)

5 6

(1,2)

6 7

PM4

20

(4,3)

3 4

(10,3)

64

(3,2)

6 7

(1,3)

7 8

(5,3)

8 9

(8,1)

20

(-1,-1)

2 3

(6,1)

20

(9,1)

2 3

PM6

53

(9,3)

5 6

(7,3)

6 7

(4,1)

0 1

(10,2)

1 2

PM7

42

(9,2)

4 5

(2,2)

5 6

(6,3)

7 8

(3,3)

8 9

(-1,-1)

30

(5,1)

20

(5,2)

2 3

PM9

53

(6,2)

75

(3,1)

0 1

PM10

41

(2,3)

86

Fig. 7. Optimal solution of the 10 � 10 instance with maintenance constraint (f1 = 9, f2 = 60, f3 = 8).

1122 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
with the HTSA, the proposed DABC algorithm can obtain richer optimal solutions in solving four small and medium scale
instances. The P-ABC and MOPSO + LS algorithms are the two methods in the six published compared algorithms which
embed a Pareto archive set and thus can provide multiple solutions at one run. It can be seen from Table 7 that the MOP-
SO + LS algorithm can obtain all non-dominated solutions only for the 10 � 10 instance whereas the DABC algorithm can ob-
tain all optimal solutions for the five instances. The P-ABC algorithm can obtain three non-dominated solutions for instances
4 � 5, 8 � 8, and 10 � 10, while only one non-dominated solution for instance 10 � 7. For solving the large scale instance
15 � 10, P-ABC can only obtain two relative worse solutions than the proposed algorithm. Based on the above comparisons,
it can be concluded that DABC is superior to the above six algorithms in terms of solution quality and efficiency.
5.4. Comparisons of the BRdata problems

In this study, we select seven representative instances from the BRdata set [4], namely, MK01, MK02, MK03, MK04, MK05,
MK07 and MK08 with the length of the reference Pareto solution set SP for each instance less than 40 to verify the efficiency
of the proposed DABC algorithm. The scale of these instances ranges from 55 operations to 225 operations.

There is much less literature considered the BRdata problems with multi-objectives. To make a detailed comparison, we
select four efficient algorithms from the current literature. These are the X-SM algorithm by Xing et al. [25], the AIA algo-
rithm by Bagheri et al. [2], the hGA by Gao et al. [46], and the HTSA by Li et al. [26].

The comparisons of the computational results are shown in Tables 8–10. In these tables, the solution number marked
with ‘⁄’ means that the corresponding solution is a non-dominated solution. Table 8 gives the computational results for
the MK01 and MK02 instances. From Table 8, we can see that the DABC obtain more optimal solutions at one run instead
of generating only a single solution as other algorithms did. For example, the proposed DABC algorithm obtains ten non-
dominated solutions for MK01 and eight for MK02. Furthermore, all the results obtained by the proposed DABC algorithm
dominate those results generated by the X-SM and AIA. The comparisons for MK03 and MK07 are shown in Table 9. It
can be seen from Table 9 that only the hGA and the DABC algorithms can obtain optimal solutions for these two instances.
In addition, our proposed algorithm obtains 17 non-dominated solutions for MK03 and 19 optimal solutions for MK07. Ta-
ble 10 reports the comparison of the computational results for MK05 and MK08. From Table 10, we can see that for solving
MK05, even though all three algorithms show promising performance, the proposed DABC algorithm can obtain eleven opti-
mal solutions; on the other hand, for solving MK08, the four algorithms except the AIA can obtain non-dominated solutions.
However, the proposed DABC algorithm is able to obtain more optimal solutions. The computational results for the MK04
instance are given in Table 11. It is obvious that only the proposed DABC algorithm obtains optimal solutions for the instance,
hence it is clear winner by providing 27 optimal solutions.

It should be noted that all non-dominated solutions presented in Tables 8–11 are obtained by performing the DABC algo-
rithm for 30 runs. To the best of our knowledge, all these solutions are the best ones for the considered multi-objective prob-
lems in the present literature. Thus, we can construct each reference Pareto solution set SP by using the non-dominated

0 1 2 3 4 5 6 7 8

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

(2,1)

20

PM1

42

(1,1)

4 5

(7,1)

5 6

PM2

1 2

(8,2)

52

(8,3)

75

(5,3)

7 8

(10,1)

0 1

(4,2)

41

PM3

4 5

(1,2)

5 6

(7,2)

6 7

PM4

20

(4,3)

4 5

(10,3)

75

(1,3)

7 8

(8,1)

20

(-1,-1)

2 3

(6,1)

20

(9,1)

2 3

PM6

53

(9,3)

5 6

(7,3)

7 8

(4,1)

0 1

PM7

31

(9,2)

3 4

(10,2)

4 5

(3,3)

5 6

(6,3)

6 7

(3,2)

1 2

(-1,-1)

52

PM9

20

(6,2)

42

(5,1)

64

(5,2)

6 7

(3,1)

0 1

(2,2)

2 3

PM10

63

(2,3)

86

Fig. 8. Optimal solution of the 10 � 10 instance with maintenance constraint (f1 = 8, f2 = 61, f3 = 7).

0 2 4 6 8 10 12

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

(14,1)

0 2

(11,1)

2 3

(7,1)

3 4

PM1-1

4 5

(1,1)

5 6

(1,2)

6 7

(6,2)

7 8

(8,4)

8 9

(13,1)

0 2

(6,1)

2 3

(3,1)

3 4

PM2-1

4 5

(3,3)

5 7

(13,4)

7 9

(10,4)

9 11

(7,2)

11 12

PM3-1

0 1

(9,2)

1 3

(2,2)

3 5

(11,3)

5 7

(1,3)

7 8

PM3-2

8 10

(2,1)

0 1

PM4-1

41

(8,3)

6 8

(3,4)

8 9

(5,4)

9 11

(4,1)

0 1

(4,2)

1 2

PM5-1

2 4

(12,2)

84

(15,4)

8 10

(14,4)

10 12

PM6-1

0 1

(5,2)

1 3

(11,2)

3 4

(15,3)

4 6

(4,3)

6 7

(12,3)

8 10

(8,1)

0 1

PM7-1

2 3

(9,3)

73

(5,3)

7 9

(11,4)

9 10

(12,4)

10 12

(15,1)

0 2

(12,1)

2 4

PM8-1

4 5

(8,2)

5 6

(10,2)

6 8

(14,3)

8 10

PM8-2

10 11

(2,4)

11 12

(5,1)

0 1

PM9-1

1 2

(15,2)

2 4

(3,2)

4 5

(14,2)

5 7

(1,4)

218

(9,1)

0 1

(10,1)

1 2

(13,2)

2 4

(13,3)

4 6

(2,3)

6 7

PM10-1

7 8

(10,3)

8 9

(9,4)

9 11

(4,4)

11 12

Fig. 9. Optimal solution of the 15 � 10 instance with maintenance constraint (f1 = 12, f2 = 107, f3 = 12).

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1123
solutions given in the five tables for each corresponding instance. It is important to note that all these Pareto front sets will
be used to make performance analysis in the Section 5.5.
5.5. Performance analysis

According to Ref. [27], three main metrics are commonly considered for evaluating the quality and diversity of the ob-
tained non-dominated solutions in the Pareto archive set. That is, the number of the obtained non-dominated solutions

Table 6
Comparison of the three FJSPs with PM tasks.

Algorithm 8 � 8 �m 10 � 10 �m 15 � 10 �m

f1 f2 f3 f1 f2 f3 f1 f2 f3

hGA 17 105 15 8 61 7 12 107 12
FBS-based algorithm 18 103 16 9 60 8 n/a
DABC 17 105 15 8 61 7 12 107 12

18 103 16 9 60 8

-n/a means not given by the author

Table 7
Comparison of results on the five Kacem instances.

Algorithm 4 � 5 8 � 8 10 � 7 10 � 10 15 � 10

f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

PSO + SA n/a 15 75 12 n/a 7 44 6 12 91 11
16 73 13

PSO + TS 11 32 10 14 77 12 n/a 7 43 6 11 93 11
15 75 12

X-LS 12 32 8 14 77 12 11 61 11 7 42 6 11 91 11
15 76 12 11 62 10 8 42 5 11 93 10

HTSA 11 32 10 14 77 12 11 61 11 7 42 6 11 91 11
12 32 8 15 75 12 11 62 10 8 42 5 11 93 10

7 43 5
P-DABC 11 32 10 14 77 12 12 61 11 7 43 5 12 91 11

12 32 8 15 75 12 11 63 11 8 41 7 11 93 11
13 33 7 16 73 13 12 60 12 8 42 5

MOPSO + LS 14 77 12 7 42 6 11 91 11
15 75 12 8 42 5 12 93 10

n/a 16 73 13 n/a 7 43 5
16 78 11 8 41 7
17 77 11

DABC 11 32 10 14 77 12 11 61 11 7 42 6 11 91 11
12 32 8 15 75 12 11 62 10 8 42 5 11 93 10
11 34 9 16 73 13 12 60 12 7 43 5
13 33 7 16 77 11 8 41 7

n/a means not given by the author.

Table 8
Comparison of results on MK01 and MK02.

Algorithm Solutions MK01 Solutions MK02

Makespan Total workload Max workload Makespan Total workload Max workload

X-SM 1 42 162 42 1 28 155 28
AIA 1 40 171 36 1 26 154 26
hGA 1

⁄
40 167 36 1⁄ 26 151 26

HTSA 1⁄ 40 167 36 1⁄ 26 151 26
DABC 1⁄ 40 167 36 1⁄ 26 151 26

2⁄ 40 162 38 2⁄ 27 145 27
3⁄ 40 164 37 3⁄ 28 144 28
4⁄ 41 160 38 4⁄ 29 143 29
5⁄ 41 163 37 5⁄ 29 150 26
6⁄ 42 165 36 6⁄ 30 142 30
7⁄ 42 158 39 7⁄ 31 141 31
8⁄ 42 156 40 8⁄ 33 140 33
9⁄ 43 154 40
10⁄ 45 153 42

‘⁄’ Means the corresponding solution is a non-dominated solution.

1124 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
(N�), average distance of the obtained non-dominated front to Pareto front (D�), and the ratio of the obtained non-dominated
solutions (R�). Suppose that SP represents the reference Pareto solution set, and SK the solution set obtained by the proposed
algorithm, then the performance metrics are listed as follows:

Average distance of the obtained non-dominated front to Pareto front (D�): Let dp(SK) denotes the shortest normalized dis-
tance from a reference solution p 2 SP to the solution set SK, which is given by the following formula:

Table 9
Comparison of results on MK03 and MK07.

Algorithm Solutions MK07 Solutions MK03

Makespan Total workload Max workload Makespan Total workload Max workload

X-SM 1 150 717 150 1 204 852 204
AIA 1 140 695 140 1 204 1207 204
hGA 1⁄ 139 693 139 1⁄ 204 850 204
HTSA 1 140 695 140 1 204 852 204
DABC 1⁄ 139 693 139 1⁄ 204 850 204

2⁄ 140 685 140 2⁄ 210 848 210
3⁄ 143 683 143 3⁄ 213 844 213
4⁄ 144 674 144 4⁄ 221 842 221
5⁄ 146 673 144 5⁄ 222 838 222
6⁄ 150 669 150 6⁄ 231 834 231
7⁄ 151 667 151 7⁄ 240 832 240
8⁄ 156 664 156 8⁄ 249 830 249
9⁄ 157 662 157 9⁄ 258 828 258
10⁄ 161 660 161 10⁄ 267 826 267
11⁄ 162 659 162 11⁄ 276 824 276
12⁄ 166 657 166 12⁄ 285 822 285
13⁄ 178 655 178 13⁄ 294 820 294
14⁄ 179 655 175 14⁄ 303 818 303
15⁄ 190 653 190 15⁄ 312 816 312
16⁄ 202 651 202 16⁄ 321 814 321
17⁄ 204 654 187 17⁄ 330 812 330
18⁄ 208 653 187
19⁄ 217 649 217

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1125
dpðSKÞ ¼min
x2SK

ffiXw

i¼1

fiðxÞ � fiðpÞ
f max
i ð�Þ � f min

i ð�Þ

 !2
vuut

8<
:

9=
;; ð10Þ
where w is the objective number of the problem, f max
i ð�Þ and f min

i ð�Þ are the maximum and minimum value of the ith objective
in the reference Pareto set SP, respectively and fi(�) represents the ith objective value. In this study, if f max

i ð�Þ � f min
i ð�Þ ¼ 0, then

we set f max
i ð�Þ � f min

i ð�Þ ¼ 0:5.
The average distance is the average of those shortest normalized distances from all the reference solutions to the obtained

solutions set SK, which is calculated as follows:
D�ðSKÞ ¼ 1
jSP j

X
p2SP

dp SK
� �

: ð11Þ
It is obvious that a smaller D�(�) value denotes a better distribution of the obtained solution set.
Number of non-dominated solution N�: The total number of non-dominated solutions in the obtained solution set repre-

sents the efficiency of the proposed algorithm. It is clear that the larger the metric, the better the obtained solution set. The
metric N� is calculated as follows:
N�ðSKÞ ¼ SK � x 2 SK 9y 2 SP : y � x
���n o��� ���: ð12Þ
Ratio of non-dominated solution R�: The ratio of non-dominated solutions is used to evaluate the quality of the solutions in
the obtained solutions set. It is obvious that the higher the R� is, the better the set SK is
R�ðSKÞ ¼ N�ðSKÞ
SK
��� ��� : ð13Þ
Table 12 shows the average performance of our proposed algorithm for solving all instances explained before. For each
instance, ten independent runs were preformed. The first column in Table 12 gives the considered problems. The next four
columns report the maximum, minimum, average and standard deviation (SD) of the number of non-dominated solution N�
for the corresponding problem, respectively. The maximum, minimum, average, and standard deviation of the ratio of non-
dominated solution R� are given from 6th column to 9th column in the table, respectively. The following four columns list
the result for the average distance of the obtained non-dominated front to Pareto front D�. The standard deviation (SD) is
computed as follows:
SD ¼

ffiPw
i¼1ðxi � xÞ2

w

s
; ð14Þ

Table 10
Comparison of results on MK05 and MK08.

Algorithm Solutions MK05 Solutions MK08

Makespan Total workload Max workload Makespan Total workload Max workload

X-SM 1 177 702 177 1⁄ 523 2524 523
AIA 1 173 686 173 1 523 2723 523
hGA 1⁄ 172 687 172 1⁄ 523 2524 523
HTSA 1⁄ 172 687 172 1⁄ 523 2524 523
DABC 1⁄ 172 687 172 1⁄ 523 2524 523

2⁄ 173 683 173 2⁄ 524 2519 524
3⁄ 175 682 175 3⁄ 533 2514 533
4⁄ 178 680 178 4⁄ 542 2509 542
5⁄ 179 679 179 5⁄ 551 2504 551
6⁄ 183 677 183 6⁄ 560 2499 560
7⁄ 185 676 185 7⁄ 569 2494 569
8⁄ 191 675 191 8⁄ 578 2489 578
9⁄ 197 674 197 9⁄ 587 2484 587
10⁄ 203 673 203
11⁄ 209 672 209

Table 11
Comparison of results on MK04.

Algorithm Solutions Makespan Total workload Max workload

X-SM 1 68 352 67
AIA 1 60 403 60
hGA 1 60 375 60
HTSA 1 61 366 61
DABC 1⁄ 60 374 60

2⁄ 61 368 60
3⁄ 61 365 61
4⁄ 62 360 61
5⁄ 62 363 60
6⁄ 62 357 62
7⁄ 63 354 62
8⁄ 63 357 61
9⁄ 63 360 60
10⁄ 64 353 62
11⁄ 65 349 63
12⁄ 66 348 63
13⁄ 66 345 66
14⁄ 68 344 66
15⁄ 68 347 65
16⁄ 70 343 67
17⁄ 72 340 72
18⁄ 78 337 78
19⁄ 84 334 84
20⁄ 90 331 90
21⁄ 98 330 98
22⁄ 106 329 106
23⁄ 114 328 114
24⁄ 122 327 122
25⁄ 130 326 130
26⁄ 138 325 138
27⁄ 146 324 146

1126 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
where x is the average value of the w runs. The last two columns give the average computational times for obtaining one
solution A1(s) and the average computational times for all solutions A2(s) after ten independently runs. The A1(s) and
A2(s) are computed as follows:
A2ðsÞ ¼
Pw

i¼1ti

w
; ð15Þ

A1ðsÞ ¼
A2ðsÞPw

i¼1jS
i
K j=w

; ð16Þ

Table 12
Performance of the DABC for solving all considered instances.

Problems N� R� D� A1(s)⁄ A2(s)⁄

MAX MIN AVG SD MAX MIN AVG SD MAX MIN AVG SD

8 � 8 �m 2.00 2.00 2.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.36 0.71
10�10 �m 2.00 1.00 1.60 0.49 1.00 0.50 0.94 0.16 1.22 0.00 0.37 0.56 6.39 10.88
15 � 10 �m 1.00 0.00 0.83 0.37 1.00 0.00 0.83 0.37 2.00 0.00 0.36 0.77 26.02 26.02
4 � 5 4.00 4.00 4.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
8 � 8 4.00 3.00 3.90 0.30 1.00 1.00 1.00 0.00 0.13 0.00 0.01 0.04 6.71 26.18
10 � 7 3.00 3.00 3.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 3.74 11.21
10 � 10 4.00 4.00 4.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 6.86 27.43
15 � 10 2.00 0.00 0.88 0.93 1.00 0.00 0.63 0.34 2.22 0.00 1.31 1.02 45.57 63.65
MK01 9.00 2.00 4.90 2.34 0.90 0.14 0.44 0.26 0.16 0.02 0.08 0.04 17.21 191.64
MK02 6.00 3.00 4.33 0.94 0.67 0.22 0.47 0.14 0.17 0.05 0.11 0.03 27.63 254.56
MK03 17.00 14.00 16.33 0.94 1.00 0.74 0.94 0.08 0.00 0.00 0.00 0.00 17.83 309.67
MK04 21.00 13.00 17.40 2.10 1.00 0.50 0.81 0.16 0.12 0.04 0.05 0.02 37.32 801.74
MK05 11.00 7.00 8.67 1.05 1.00 0.47 0.63 0.14 0.03 0.00 0.01 0.01 23.48 323.14
MK07 14.00 8.00 11.00 1.61 0.93 0.26 0.63 0.20 0.05 0.03 0.04 0.00 56.54 987.20
M/K08 9.00 9.00 9.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 2.86 25.73

⁄Time unit: second.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generation

N
um

be
r o

f n
on

-d
om

in
at

ed
 s

ol
ut

io
n

8-8-m
10-10-m
15-10-m

Fig. 10. Evolutionary curves of the N� for the three Kacem instances with PM tasks.

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1127
where jSi
K j represents the number of solutions obtained in the ith run, ti denotes the computational times consumed for

the ith run, w is the running times.
Following observations can be derived from Table 12:

For solving the three multi-objective problems with maintenance tasks, the proposed algorithm shows efficient perfor-
mance, especially for the largest scale 15 � 10 �m instance. The computational times for each instance with PM tasks are
also competitive to other algorithms;
For solving the five Kacem instances, the proposed DABC algorithm can obtain all non-dominated solutions and the aver-
age performances are also efficient;
The standard deviation of the D� for each BRdata instance shows that the resulted solutions obtained by the DABC algo-
rithm are all in the Pareto front or very near to the Pareto front. The standard deviation of the R� for each instance also
verifies the robustness of the proposed algorithm;
The average values of N�, R�, and D� for each instance show that the proposed algorithm holds effectiveness and effi-
ciency in solving the considered problems;
The average computational times for most instances are competitive to other algorithms.

To deeply verify the performance of the proposed algorithm, Figs. 10–12 illustrate the evolutionary curves of the N�, D�,
and R�, respectively, for the three Kacem instances with PM tasks. Meanwhile, Figs. 13–15 show the evolutionary curves of

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

Generation

A
ve

ra
ge

 d
is

ta
nc

e
to

 P
ar

et
o

fro
nt

8-8-m
10-10-m
15-10-m

Fig. 11. Evolutionary curves of the D� for the three Kacem instances with PM tasks.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

R
at

io
 o

f n
on

-d
om

in
at

ed
 s

ol
ut

io
n

8-8-m
10-10-m
15-10-m

Fig. 12. Evolutionary curves of the R� for the three Kacem instances with PM tasks.

1128 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
the N�, D�, and R�, respectively, for MK01, MK02, MK04, and MK07. It can be concluded from these Figures that the proposed
algorithm has an efficient performance during the search process.
5.6. Comparisons of makespan on the seven BRdata problems

Table 13 illustrates the comparison of the makespan results on the seven BRdata instances of the DABC algorithm with six
recent algorithms, i.e., the GA by Pezzella et al. [12] (hereafter called P.M.C.), the KBACO algorithm by Xing et al. [19], the
PVNS by Yazdani et al. [18], the HTSA [26], the CDDS algorithm by Hmida et al. [20], and the ABC by Wang et al. [21].
The relative improvement of our algorithm with respect to the corresponding algorithm is defined as follows:
imp ¼ ½ðMKc �MKourÞ=MKc� � 100%; ð17Þ
where MKour is the makespan obtained by our algorithm and MKc is the makespan of the algorithm being compared to.
Following observations can be derived from Table 13:

0 150 300 450 600 750
0

2

4

6

8

10

12

14

16

18

Generation

N
um

be
r o

f n
on

-d
om

in
at

ed
 s

ol
ut

io
n

MK01
MK02
MK04
MK07

Fig. 13. Evolutionary curves of the N� for MK01, MK02, MK04, and MK07.

0 150 300 450 600 750
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

A
ve

ra
ge

 d
is

ta
nc

e
to

 P
ar

et
o

fro
nt

MK01
MK02
MK04
MK07

Fig. 14. Evolutionary curves of the D� for MK01, MK02, MK04, and MK07.

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1129
For solving the instance MK05, the DABC algorithm outperforms the P.M.C., the KBACO, the PVNS, and the CDDS
algorithms;
For MK07, the DABC algorithm outperforms the KBACO, the PVNS, and the HTSA algorithms;
The DABC algorithm outperforms the KBACO algorithm in 4 out of 7 problems and outperforms the PVNS approach and
the HTSA algorithm in 2 out of 7 problems;
When compared to the CDDS algorithm, the DABC algorithm can obtain either better result in solving MK05 or the same
results for other instances;
When compared to the very recently published ABC algorithm, our proposed algorithm can obtain the same best make-
span results, which are the best results among all the compared algorithms.
The only slightly worse result obtained by the DABC algorithm is for solving MK01 where the makespan obtained by the
KBACO algorithm is 39 while the DABC algorithm generated the makespan of 40;
The last row reports the average improvement of our algorithm with respect to other compared algorithms. It should be
noted that the objective functions in the five algorithms, i.e., the P.M.C., the KBACO, the PVNS, the CDDS, and the ABC, are

0 150 300 450 600 750
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generation

R
at

io
 o

f n
on

-d
om

in
at

ed
 s

ol
ut

io
n

MK01
MK02
MK04
MK07

Fig. 15. Evolutionary curves of the R� for MK01, MK02, MK04, and MK07.

Table 13
Comparison of makespan on the seven BRdata instances.

Name Size op_num LB DABC P.M.C. imp
(%)

KBACO imp
(%)

PVNS imp
(%)

HTSA imp
(%)

CDDS imp
(%)

ABC imp
(%)

MK01 10 � 6 55 36 40 40 0.00 39 -2.56 40 0.00 40 0.00 40 0.00 40 0.00
MK02 10 � 6 58 24 26 26 0.00 29 +10.34 26 0.00 26 0.00 26 0.00 26 0.00
MK03 15 � 8 150 204 204 204 0.00 204 0.00 204 0.00 204 0.00 204 0.00 204 0.00
MK04 15 � 8 90 48 60 60 0.00 65 +7.69 60 0.00 61 +1.64 60 0.00 60 0.00
MK05 15 � 4 106 168 172 173 +0.58 173 +0.58 173 +0.58 172 0.00 173 +0.58 172 0.00
MK07 20 � 5 100 133 139 139 0.00 144 +3.47 141 +1.42 140 +0.71 139 0.00 139 0.00
MK08 20 � 10 225 523 523 523 0.00 523 0.00 523 0.00 523 0.00 523 0.00 523 0.00
Avg

imp
+0.08 +2.79 +0.29 +0.34 +0.08 0.00

1130 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
single objective while the problems considered in this study are multi-objective. Thus, the comparisons of makespan
results on the BRdata instances also verify the efficiency of the DABC.

6. Conclusions

This paper aims at solving the multi-objective FJSPs with minimization of the maximal completion time, the total work-
load, the maximal workload. We considered the problem under both the preventive maintenance constraints and non-main-
tenance constraints cases and presented a discrete artificial bee colony algorithm. In the proposed algorithm, the food
sources were represented as discrete machine number and job permutation. The ABC based searching mechanism with
an effective population initialization approach and a TS based local search with a self-adaptive neighboring food source gen-
eration strategy were developed to perform exploration and exploitation for promising solutions within the entire solution
space. Due to the reasonable hybridization of the ABC search and TS based local search, the proposed DABC algorithm had the
ability to obtain promising solutions for the problem considered. Computational simulations and comparisons demonstrated
the effectiveness and efficiency of the proposed algorithm. Our future work is to investigate the other meta-heuristics for the
multi-objective flexible job shop scheduling problems and generalize the application of the ABC algorithms to solve other
combinatorial optimization problems.

Acknowledgements

This research is partially supported by National Science Foundation of China under Grant 61104179 and 61174187, Basic
scientific research foundation of Northeast University under Grant N110208001, starting foundation of Northeast University
under Grant 29321006, Science Foundation of Liaoning Province in China (2013020016), and Science Research and Develop-
ment of Provincial Department of Public Education of Shandong under Grant (J08LJ20, J09LG29, and J10LG25). In addition, it
is also partially supported by TUBITAK project 110M622.

J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132 1131
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.apm.2013.07.038.
References

[1] B. Naderi, S.M.T. Fatemi Ghomi, M. Aminnayeri, M. Zandieh, Scheduling open shops with parallel machines to minimize total completion time, J.
Comput. Appl. Math. 235 (2011) 1275–1287.

[2] A. Bagheri, M. Zandieh, I. Mahdavi, M. Yazdani, An artificial immune algorithm for the flexible job-shop scheduling problem, Future Gener. Comput.
Syst. 26 (2010) 533–541.

[3] P. Fattahi, M. Saidi, F. Jolai, Mathematical modeling and heuristic approaches to flexible job shop scheduling problems, J. Intel. Manuf. 18 (2007) 331–
342.

[4] P. Brandimarte, Routing and scheduling in a flexible job shop by tabu search, Ann. Oper. Res. 41 (1993) 157–183.
[5] M. Mastrolilli, L.M. Gambardella, Effective neighborhood functions for the flexible job shop problem, J. Scheduling 3 (2000) 3–20.
[6] P. Fattahi, F. Jolai, J. Arkat, Flexible job shop scheduling with overlapping in operations, Appl. Math. Model. 33 (2009) 3076–3087.
[7] M. Ennigrou, K. Ghedira, New local diversification techniques for flexible job shop scheduling problem with a multi-agent approach, Auton. Agents

Multi-Agent 17 (2008) 270–287.
[8] J.Q. Li, Q.K. Pan, P.N. Suganthan, T.J. Chua, A hybrid tabu search algorithm with an efficient neighborhood structure for the flexible job shop scheduling

problem, Int. J. Adv. Manuf. 52 (2011) 683–697.
[9] W. Bo _zejko, M. Uchroński, M. Wodecki, Parallel hybrid metaheuristics for the flexible job shop problem, Comput. Ind. Eng. 59 (2010) 323–333.

[10] I. Kacem, S. Hammadi, P. Borne, Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems,
IEEE Trans. Syst. Man Cybern. C 32 (2002) 408–419.

[11] N.B. Ho, J.C. Tay, E.M.K. Lai, An effective architecture for learning and evolving flexible job-shop schedules, Eur. J. Oper. Res. 179 (2007) 316–333.
[12] F. Pezzella, G. Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop scheduling problem, Comput. Oper. Res. 35 (2008) 3202–3212.
[13] J. Gao, L. Sun, M. Gen, A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems, Comput. Oper. Res. 35

(2008) 2892–2907.
[14] W.J. Xia, Z.M. Wu, An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems, Comput. Ind. Eng. 48 (2005)

409–425.
[15] L. Gao, C.Y. Peng, C. Zhou, P.G. Li, Solving flexible job shop scheduling problem using general particle swarm optimization, in: Proceedings of the 36th

CIE Conference on, Computers & Industrial Engineering, 2006, pp. 3018–3027.
[16] H.B. Liu, A. Abraham, C. Grosan, A novel variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems,

in: Proceeding of the second IEEE International Conference on Digital Information Management ICDIM, 2007, pp. 138–145.
[17] G.H. Zhang, X.Y. Shao, P.G. Li, L. Gao, An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling

problem, Comput. Ind. Eng. 56 (2009) 1309–1318.
[18] M. Yazdani, M. Amiri, M. Zandieh, Flexible job-shop scheduling with parallel variable neighborhood search algorithm, Expert. Syst. Appl. 37 (2010)

678–687.
[19] L.N. Xing, Y.W. Chen, P. Wang, Q.S. Zhao, J. Xiong, A knowledge-based ant colony optimization for flexible job shop scheduling problems, Appl. Soft

Comput. 10 (2010) 888–896.
[20] A.B. Hmida, M. Haouari, M.J. Huguet, P. Lopez, Discrepancy search for the flexible job shop scheduling problem, Comput. Oper. Res. 37 (2010) 2192–

2201.
[21] L. Wang, G. Zhou, Y. Xu, S.Y. Wang, An effective artificial bee colony algorithm for the flexible job-shop scheduling problem, Int. J. Adv. Manuf. 60

(2012) 303–315.
[22] I. Kacem, S. Hammadi, P. Borne, Pareto-optimality approach for flexible job-shop scheduling problems, hybridization of evolutionary algorithms and

fuzzy logic, Math. Comput. Simulat. 60 (2002) 245–276.
[23] J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems, Comput. Ind. Eng. 54

(2008) 453–473.
[24] L.N. Xing, Y.W. Chen, K.W. Yang, Multi-objective flexible job shop schedule, design and evaluation by simulation modeling, Appl. Soft Comput. 9 (2009)

362–376.
[25] L.N. Xing, Y.W. Chen, K.W. Yang, An efficient search method for multi-objective flexible job shop scheduling problems, J. Intel. Manuf. 20 (2009) 283–

293.
[26] J.Q. Li, Q.K. Pan, Y.C. Liang, An effective hybrid tabu search algorithm for multi-objective flexible job shop scheduling problems, Comput. Ind. Eng. 59

(2010) 647–662.
[27] Q.K. Pan, L. Wang, B. Qian, A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems, Comput. Oper. Res. 36 (2009)

2498–2511.
[28] G. Moslehi, M. Mahnam, A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local

search, Int. J. Prod. Econ. 129 (2010) 14–22.
[29] J.Q. Li, Q.K. Pan, K.G. Gao, Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems, Int. J. Adv.

Manuf. 55 (2011) 1159–1169.
[30] G. Schmidt, Scheduling with limited machine availability, Eur. J. Oper. Res. 121 (2000) 1–15.
[31] Y. Ma, C.B. Chu, C.R. Zuo, A survey of scheduling with deterministic machine availability constraints, Comput. Ind. Eng. 58 (2010) 199–211.
[32] J. Gao, M. Gen, L.Y. Sun, Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm, J. Intel. Manuf. 17 (2006) 493–507.
[33] N. Zribi, A.E. Kamel, P. Borne, Minimizing the makespan for the MPM job-shop with availability constraints, Int. J. Prod. Econ. 112 (2008) 151–160.
[34] F.T.S. Chan, S.H. Chung, L.Y. Chan, G. Finke, M.K. Tiwari, Solving distributed FMS scheduling problems subject to maintenance, genetic algorithms

approach, Robot. Cim-Int. Manuf. 22 (2006) 493–504.
[35] S.J. Wang, J.B. Yu, An effective heuristic for flexible job-shop scheduling problem with maintenance activities, Comput. Ind. Eng. 59 (2010) 436–447.
[36] D. Karaboga, An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer

Engineering Department, 2005.
[37] D. Karaboga, B. Basturk, On The performance of artificial bee colony (ABC) algorithm, Appl. Soft Comput. 8 (2008) 687–697.
[38] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Appl. Math. Comput. 214 (2009) 108–132.
[39] Q.K. Pan, M.F. Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem,

Inform. Sci. 181 (2010) 2455–2468.
[40] C. Özgüven, L. Özbakır, Y. Yavuz, Mathematical models for job-shop scheduling problems with routing and process plan flexibility, Appl. Math. Model.

34 (2010) 1539–1548.
[41] F. Glover, Tabu Search, A Tutorial, Interfaces, 20 (1990) pp. 74–94.
[42] M. Dell’Amico, M. Trubian, Applying tabu search to the job-shop scheduling problem, Ann. Oper. Res. 41 (1993) 231–252.
[43] E. Nowicki, C. Smutnicki, A fast taboo search algorithm for the job-shop problem, Manage. Sci. 42 (1996) 797–813.

http://dx.doi.org/10.1016/j.apm.2013.07.038
http://dx.doi.org/10.1016/j.apm.2013.07.038
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0005
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0005
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0010
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0010
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0015
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0015
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0020
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0025
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0030
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0035
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0035
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0040
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0040
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0045
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0045
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0050
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0050
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0055
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0060
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0065
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0065
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0070
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0070
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0075
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0075
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0080
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0080
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0085
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0085
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0090
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0090
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0095
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0095
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0100
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0100
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0105
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0105
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0110
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0110
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0115
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0115
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0120
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0120
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0125
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0125
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0130
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0130
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0135
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0135
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0140
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0145
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0150
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0155
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0160
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0160
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0165
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0170
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0175
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0180
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0180
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0185
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0185
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0185
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0190
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0195

1132 J.-Q. Li et al. / Applied Mathematical Modelling 38 (2014) 1111–1132
[44] C.Y. Zhang, P.G. Li, Z.L. Guan, Y.Q. Rao, A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem, Comput. Oper.
Res. 34 (2007) 3229–3242.

[45] K. Deb, A. Paratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm, NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197.
[46] J. Gao, M. Gen, L.Y. Sun, X.H. Zhao, A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems,

Comput. Ind. Eng. 53 (2007) 149–162.

http://refhub.elsevier.com/S0307-904X(13)00512-X/h0200
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0200
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0205
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0210
http://refhub.elsevier.com/S0307-904X(13)00512-X/h0210

	A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities
	1 Introduction
	2 Problem formulation
	3 Artificial bee colony algorithm
	3.1 The basic concept of ABC algorithm
	3.2 Control parameters
	3.3 Initial population
	3.4 Employed bee phase
	3.5 Onlooker bee phase
	3.6 Scout bee phase

	4 The proposed DABC algorithm
	4.1 Solution representation
	4.2 Decoding with maintenance task
	4.3 Neighborhood structures
	4.4 Neighborhoods for routing vector
	4.5 Neighborhoods for scheduling vector
	4.6 A self-adaptive strategy to produce neighboring solutions
	4.7 TS-based local search heuristic
	4.8 Initial population
	4.9 Framework of the DABC algorithm

	5 Computational results
	5.1 Parameter setting
	5.2 Comparisons of the three FJSPs with PM tasks
	5.3 Comparisons of the five Kacem instances
	5.4 Comparisons of the BRdata problems
	5.5 Performance analysis
	5.6 Comparisons of makespan on the seven BRdata problems

	6 Conclusions
	Acknowledgements
	Appendix A Supplementary data
	References

