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ABSTRACT

This paper proposes a hybrid chemical-reaction optimization (HCRO) algorithm for solving the job-shop
scheduling problem with fuzzy processing time. The flexible maintenance activities under both
resumable and non-resumable situations are also considered to make the problem more close to the
reality. In the proposed algorithm, each solution is represented by a chemical molecule. Four
elementary reactions, i.e., on-wall ineffective collision, inter-molecular ineffective collision, decom-
position, and synthesis, are imposed. A well-designed crossover function is introduced in the synthesis
and decomposition operators. In order to balance the exploitation and exploration, HCRO divides the
evolution phase into two loop bodies: the first loop body contains on-wall ineffective collision and
inter-molecular ineffective collision, while the second loop body includes all the four elementary
reactions. Tabu search (TS) based local search is embedded in the proposed algorithm to enhance the
convergence capability. A novel decoding approach is utilized to schedule each operation, while
considering each flexible preventive maintenance activity on each machine. The proposed algorithm is
tested on sets of the well-known benchmark instances. Through the analysis of experimental results,
the highly effective performance of the proposed HCRO algorithm is shown against three efficient
algorithms from the literature, i.e., SMGA (Sakawa and Mori, 1999), GPSO (Niu et al., 2008), and RKGA

(Zheng et al., 2010).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recently, job-shop scheduling problem (JSSP) has received more
and more research attentions (Armentano and Scrich, 2000). In the
classical JSSP, n jobs are to be scheduled on m machines with
predefined sequence and constraints. The processing time for each
operation on each machine is generally deterministic. However, in
most practical industries, the processing time for each operation is
just a fuzzy value, because various factors are involved in the real-
world problems. This is particularly true in the practical situations
when human-centred factors are incorporated into the problems.
Kuroda and Wang (1996) proposed a branch-and-bound algorithm
for solving both the static and the dynamic JSSP. After that, many
researchers have conducted different approaches for solving the fuzzy
JSSP (FJSSP). Genetic algorithm (GA) is one of the most popular
algorithms which have been utilized for the problem. Sakawa and
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Mori (1999) designed an efficient GA for solving the FJSSP with fuzzy
processing time and fuzzy due date. Again, in 2000, a fuzzy pro-
gramming based GA was presented by Sakawa and Kubota for the
multi-objective FJSSP. Song et al. (2006) developed a hybrid algorithm
combining GA, Ant colony optimization (ACO), and a local search
approach. Inés et al. (2010) solved the multi-objective JSSP with
uncertain durations and crisp due dates by an efficient GA embedded
with a fuzzy programming approach. Lei (2010a) developed a random
key GA algorithm for the problem. The other swarm intelligent
algorithms have also been introduced for solving the FJSSP. Wu
et al. (2006) designed an efficient algorithm by combining the fuzzy
ranking method and shifting bottleneck procedure. Lei (2007) pro-
posed an algorithm to apply particle swarm optimization (PSO) to
solve the FJSSP with three objectives. Niu et al. (2008) introduced a
hybrid algorithm combining PSO and GA for the problem. Very
recently, a modified differential evolution (DE) algorithm was con-
ducted by Hu et al. (2011) for solving the FJSSP with fuzzy processing
time and fuzzy due date.

Most literature considering JSSP assumes that each machine is
available in the production horizon. However, in reality, opera-
tions may be interrupted by the preventive maintenance (PM)
activity on the processing machines. Schmidt (2000) has summar-
ized most results related to deterministic scheduling problems



J-q. Li, Q.-k. Pan / Int. ]. Production Economics 145 (2013) 4-17 5

with PM constraints published before 1998. Ma et al. (2010)
surveyed the scheduling problems with maintenance activity
constraints during very recent years. It shows that most literature
considered machine availability constraints in solving single
machine problems, parallel machine problems, and flow shop
scheduling problems. There are few literature considering the
availability constraints in the job-shop scheduling context. For
solving the job-shop scheduling problem with deterministic
processing time under PM situation, Gao et al. (2006) proposed
a hybridization of GA and the local search method for solving the
multi-objective flexible job-shop scheduling problems (FJSP) with
PM tasks. Zribi et al. (2008) considered the MPM job-shop
scheduling problem with maintenance activity constraints.
Wang and Yu (2010) investigated a filtered beam search (FBS)
based algorithm for FJSPs with PM tasks. For the fuzzy job-shop
scheduling problem with PM activities (FJSSP-PM), Lei (2010b)
solved the FJSSP under availability constraints with the objective
to maximize the minimum agreement index subject to periodic
maintenance. Zheng et al. (2010) proposed a random key based
GA. Lei (2011) again developed an efficient swarm-based neigh-
borhood search algorithm for the problem. However, the above
literature considers PM tasks at a fixed interval in FJSSP context.
The FJSSP with PM tasks at a flexible interval are more close to the
production reality (Gao et al. 2006; Wang and Yu, 2010), and
therefore should be given more research focuses.

Very recently, by simulating the behavior of molecules in
chemical reactions, an efficient chemical-reaction optimization
(CRO) algorithm was proposed by Lam and Li (2010b) to optimize
combinatorial problems. CRO has four elementary reactions,
namely, on-wall ineffective collision, inter-molecular ineffective
collision, decomposition, and synthesis. The first two reaction
operators perform the exploitation function, while the last two
reactions complete the exploration tasks. Meanwhile, CRO has a
buffer to collect energy produced by on-wall ineffective collision,
and help the molecules to escape from the local optima. Based on
the above characteristics, CRO is suitable for solving problems with
many local optima, such as scheduling problems, and continuous
optimization problems. Experimental comparisons demonstrated
that the performance of CRO is competitive to other swarm
intelligent algorithms (Lam and Li, 2010b; Lam et al., 2010a; Xu
et al.,, 2010; Lam and Li, 2012b). Due to its ability to escape from the
local optima, CRO has been applied for solving many scheduling
problems, such as peer-to-peer live streaming scheduling (Lam
et al.,, 2010a), resource-constrained project scheduling problem
(Lam and Li, 2010b), grid scheduling (Xu et al., 2010), task
scheduling in grid computing (Xu et al., 2011), and continuous opti-
mization problems (Lam et al., 2012a).

Although the canonical CRO has many advantages, it should be
improved in many aspects, especially its exploitation capability.
Therefore, in this study, we propose a hybrid CRO (HCRO) for solving
the fuzzy job-shop scheduling problem with flexible maintenance
constraints. The main differences between CRO and HCRO are as
follows: (1) TS-based local search is embedded in HCRO to enhance
the exploitation capability; (2) A well-designed crossover operator is
developed in HCRO; (3) HCRO divides the evolution phase into two
loop bodies: the first loop body contains two reactions, i.e., on-wall
ineffective collision and inter-molecular ineffective collision; the
second loop body includes all the four elementary reactions. The
evolution phase begins with the first loop body, that is, the exploita-
tion task is firstly been performed. When the exploitation cannot be
continued after certain number of generations, the second loop body
starts to perform both exploration and exploitation functions. Then,
the two loop bodies run alternatively.

The rest of this paper is organized as follows: Section 2 briefly
describes the problem. Then, the canonical CRO is presented in
Section 3. Section 4 gives the framework of the proposed algorithm.

Section 5 illustrates the experimental results and compares to the
present performing algorithms from the literature to demonstrate
the superiority of the proposed algorithm. Finally, Section 6 gives the
concluding remarks and future research direction.

2. Problem descriptions
2.1. Fuzzy number and operations

In this study, the fuzzy processing time is denoted by a
triangular fuzzy number (TFN), which is represented by a triplet
(similar to Sakawa and Mori, 1999). Given an operation Oy, which
should be processed on the machine M, then, p;,=(s1, S2, S3)
denotes the fuzzy processing time of Oj.

2.1.1. Fuzzy addition and fuzzy maximum

Given two fuzzy numbers: Py, =(S1, S2, $3), and Py, =(t1, t, t3).
The addition of the two triangular fuzzy numbers py, and p,,, is
shown by the following formula, similar to Sakawa and Mori
(1999).

Dijk +Puyh = (51,52,53) +(t1,t2,t3) = (S +-t1, S2 +t2, S3+3). M

The maximum (v) of the two triangular fuzzy numbers is
computed by the following formula:

Dijk VDuvh = (51 Vi1, S2 V2, S3v 13) ()

For example, given two triplet numbers py=(3, 4, 5) and
Puwr=(1, 5, 6). Then, Py +Pun=(3, 4, 5)+(1, 5, 6)=(4, 9, 11);
PijkVPun=(3v1,4v5,5v6)=(3,5, 6).

2.1.2. The method of ranking the fuzzy time

In this study, the objective of the problem is to minimize the
maximum fuzzy completion time. Therefore, the ranking of the
fuzzy time is critical in the proposed algorithm. Suppose two fuzzy
numbers § and f are represented by triplets (s, S, S3) and (ty, to, t3),
respectively, the ranking process is performed according to the
following conditions (Sakawa and Mori, 1999):

i) Condition 1. If ¢1(8)=s14+253+53/4> (<) c1(f)=t1+2t, +t3/4,
then § > ( <) f; otherwise, check condition 2.
ii) Condition 2. If c5(3)=s, > (<) ca(f)=t,, then § > ( <) f; other-
wise, check condition 3.
iii) Condition 3. If c3(8)=(s5—51)>(<) c3(f)=(t3—t;), then
$>(<)t.

For example, suppose four fuzzy numbers, 5§;=(2, 4, 6), S,=
(1,5, 8),355=(3,4,5),54=(1, 5, 9). According to the above ranking
method, ¢;(51)=4, c1(5,)=4.75, ¢1(§3)=4, c1(54)=5. Therefore, the
first two fuzzy number are 54 and 5. According to c,(.), we cannot
decide the sequence of §; and $3. At last, c3(51)=4, c3(33)=2.
Therefore, the last ranking order of the four fuzzy numbers is
§4 >§2 >.§1 >§3.

2.2. Problem formulation

In the classical JSSP, there are n jobs to be processed on m
machines. Each job consists of m operations, which should be
processed in a pre-defined order. Each machine can process only
one operation at a time. Each operation can be processed on one
machine at a time. If the processing time for each operation on each
machine is a fuzzy number rather than a deterministic number, then
the problem becomes a FJSSP. If some PM activities occur on at least
one machine during the planning horizon, then the problem is a
FJSSP-PM. There are two kinds of PM activities, i.e., fixed PM and
flexible PM. The fixed PM assumes that each PM activity has a fixed
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predefined time interval. The flexible PM assigns a time window for
each PM activity. Each PM activity should be scheduled in the given
time window, i.e., the PM task should start after the earliest starting
time of the time window, and complete before the end of the time
window. Therefore, FJSSP with flexible PM activities become harder
than the problem with fixed PM tasks. Suppose that the processing of
an operation is interrupted by a PM activity on a machine, if the
operation can be continued after the completion of the PM activity,
the operation is resumable; if the operation has to be started from
beginning when the machine becomes available, the operation is
non-resumable (Lei, 2011).

In this study, we consider the job-shop scheduling with fuzzy
processing time and flexible maintenance activities. In the pre-
sent literature for solving the FJSSP, fixed PM tasks are considered
in (Lei, 2010b, 2011). To the best of our knowledge, there is no
work for solving the FJSSP with flexible PM tasks. The problem
considered in this study is described as follows.

Let O; be the jth operation of job J;; Let p,;k be the fuzzy
processing time of O; on machine M. The objective of the
problem is to sequence each operation on each machine in order
to minimize the maximum fuzzy completion time.

The notation used in this paper is summarized in the following,
similar to Schmidt (2000):

e Indices
i: index of jobs, i=1,2...,n;
k: index of machines, k=1,2,...,m;
j: index of operation sequence, j=1,2,..., m;
I: index of maintenance tasks, [=1,2,...,L;
e Parameters
n: total number of jobs;
m: total number of machines;
Ly: total number of preventive maintenance tasks of machine
M;
PM;‘: the Ith preventive maintenance activity on Mj;
Pijk: fuzzy processing time of O; on machine M;;
[pm!S,pm!E]: time window associated with PM{, where pm! is
the earliest starting time, and pm{‘E is the latest comple-
tion time;
di;: Duration of the maintenance task PM;‘.
zi- Completion time of the maintenance task PM{‘.
e Decision variables
¢;: fuzzy completion time of Oj;

In this paper, the following objective is considered:

minf = Cmax = ; :H1132X n{éim} (3)

3. The canonical CRO

CRO was introduced by Lam and Li (2010b), which loosely
mimics what happens to molecules in a chemical reaction system
and tries to capture the energy in the reaction process. The
molecules represent the solutions for the considered problem,
which possess two kinds of energies, i.e., potential energy (PE)
and kinetic energy (KE). PE corresponds to the objective function
of a molecule while KE of a molecule symbolized its ability of
escaping from a local minimum. CRO is a population based swarm
intelligent algorithm. The main difference between CRO and other
swarm intelligent algorithms is that CRO is a swarm algorithm
with variable population size.

In the canonical CRO, there are four elementary reactions, i.e.,
the on-wall ineffective collision, decomposition, inter-molecular
ineffective collision, and synthesis. These elementary reactions

can be categorized into single molecular reactions and multiple
molecular reactions. The on-wall ineffective collision and decom-
position reactions are single molecular reactions, while the inter-
molecular ineffective collision and synthesis reactions are of the
latter category.

e The on-wall ineffective collision reaction occurs when a molecule
hits the wall and then bounces back. After the on-wall collision,
some attributes of the molecule (w) will change, and thus the
molecule becomes a new molecule (') if the given condition
satisfies. After the on-wall ineffective collision, the molecule w
will lose some percent of KE to the buffer. By losing kinetic energy
to the environment, the molecule can improve its local search
ability and enhance the convergence ability.

e The decomposition reaction is used to mimic the process of
hitting the wall and then decomposing into two or more
pieces. Two situations should be considered for the decom-
position reaction: (1) the molecule has enough energy to
complete the decomposition; (2) otherwise, the molecule
should get energy from the energy buffer.

o The process of two or more molecules to share information
with each other and then produce two or more other different
molecules is called inter-molecular ineffective collision. The
inter-molecular ineffective collision mimics the process that
two molecules collide with each other and then bounce away.

o The synthesis is the process when more than one molecule
collides and combines together. Suppose two molecules w; and
w, collide with each other, and then a new molecule «’ is
produced.

4. The proposed HCRO

In this section, we give the detailed implementation of the
proposed HCRO algorithm, which includes the encoding and decod-
ing, the well-designed crossover operator, the improved CRO reaction
operators, and the framework of the proposed algorithm.

4.1. Encoding

In this study, the job-shop scheduling problem with fuzzy
processing time is considered. The solution is represented by a
string of integer values (Li et al.,, 2010; Wang, 2003) in the

Table 1
Fuzzy processing time table.

Job Machine (fuzzy processing time)

1 3(8,9,10) 4(6,8,10) 2(7,8,12) 1(3,6,8)

2 4(3,4,5) 1(9,9,11) 2(7,8,11) 3(10,12,14)

3 3(10,10,14) 1(4,5,7) 4(4,7,11) 2(2,3,6)

4 2(9,11,15) 4(3,5,7) 1(10,13,14) 3(10,13,14)
Table 2
Preventive maintenance tasks.

PM tasks Time window Duration (dy;)

pmifs pmiE

M, PM11 0 7 4

M PM>; 1 10 1

M3 PM3; 5 15 2

My PM 4y 10 18 6
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proposed algorithm. The length of the string is equal to n x m,
where n and m represent the number of jobs and the number of
machines, respectively. In the solution string, each job number
occurs exactly m times. Each occurrence of the job number
represents the operation sequence of the corresponding job. For
example, given a 4 jobs-4 machines problem, the fuzzy processing
time for each operation on each given machine is displayed in
Table 1, while Table 2 gives the preventive maintenance con-
straints. Suppose a solution is represented by a string {3, 4, 2, 1, 2,
2,4,1,3,1, 3, 3,4, 2,1, 4}. In the solution string, each integer
value denotes the job number. The occurrence time of each job
represents the operation number of the corresponding job. The
sequence of each job number denotes the scheduling of the
corresponding operation. For example, in the given solution string,
the first job number is 3, which is the first operation of the job J.
Then the operation O3; will be first scheduled on M3, with the fuzzy
processing time (10,10,14). The following operation to be scheduled
is the operation Og4;, then O,;. The last operation in the example
solution string is O44, Which is the last operation of the job J,. From
the above string, we can conclude the scheduling sequence of all
operations, that is, 031 > 041 > 02] > 011 > 022 > 023 > 042 >0
12> 033> 013> 033> 034> 043 > 024 > 014 > Oya.

4.2. Decoding with maintenance constraints

It is notable that the solution encoding given above contains
no scheduling information for the maintenance tasks. In this sub-
section, we decode the maintenance activities under both non-
resumable and resumable cases.

4.2.1. Non-resumable case

In non-resumable case, if an operation is interrupted with a
PM task, the work of the operation before the PM task cannot be
remained during the maintenance time window. Therefore, in this
case, the operation has to be scheduled to start just after the PM
task. The maintenance tasks are scheduled dynamically by using
the following steps:

Step 1: Schedule the maintenance tasks on each machine at the
end of their time window, that is, set zk,:pmf“‘f, for each
ke(1,m).

Step 2: When schedule an operation O;; on machine My, denote
the fuzzy starting time and completion time of Oy without
considering the PM tasks, (s;l.s;2s;°) and (e;'.e;?.e;®),
respectively.

Step 3: If each maintenance task PM, does not overlap with
the operation Oj;, then schedule 0. Otherwise, perform Step 4.
Step 4: If Oy is overlapped with a maintenance task PM;‘, shift
PM;‘ to left as possible as compact, then schedule Oj; just after
PM;‘. The new starting time of Oy is (max(sijl,pm}‘5+dk,),
max(s,»jz,pm;‘Serk,), max(sij3,pmf‘5+dk,)).

Fig. 1 gives the Gantt chart for decoding of the example solution
explained before.

4.2.2. Resumable case

In resumable case, the work of an interrupted operation can be
remained and continued after the machine repair. Therefore, if an
operation is interrupted with a PM task, the processing will be
divided into two or three phases, i.e., the phase before the PM task
(if exist), the phase of the PM task, and the phase after the PM
task. Fig. 2 gives all the possible conditions which divide the
processing time window into three phases.

machine
O11
M4 (3.4.5) PMi z=
2 4 6 8 10 2 14 6 18
(0,0,0)
O11
. |:| PM task
machine
on PMi 032
M4 (3,4,5) < (12,16,22) t>
2 4 6 8 (9,11,15) 14 16 18 20 22
(0,0,0) 032
O11
machine |:| PM task
O11 On
M4 (3,4,5) PMi (19,21,23) I

2 4 6 8 10 12 14 18 20 22 24

(0,0,0) (16,16,16)
O11 032

Fig. 1. Gantt chart for the decoding process of the non-resumable case. (a) The PM
task is scheduled, (b) Before the operation O3, which is overlapped with the PM
task (PM;) is scheduled and (c) After the operation Os; is scheduled.

a b
machine machine
Oij Oij
C d
machine machine
Oij PMI Oij PM1
T_E_; t
e f
machine machine
Oij pMmI Oij  pPMI
t t

Fig. 2. The possible conditions which divide the processing time window into
three phases (resumable case).

a b
machine machine
| PM, | t T | PM, t
T > g
O Oy

Fig. 3. The possible conditions which divide the processing time window into two
phases (resumable case).
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In Fig. 2, (a) and (b) tell the status that the fuzzy starting time e The condition for (f) is that (e;' <pmfS) A (e;® > pmiE).
of an operation Oy is interrupted with the PM task, while (c)-(f)
illustrate the truth that the fuzzy completion time of the opera- The processing time window will be divided into three phases,
tion Oy is interrupted with the PM task. Suppose that the fuzzy which are given as follows:
starting time, completion time, and processing time of Oy is
(s si%si° ). (egl.ez? i), and (py'.py2.py®). Shift PMY to right as e The phase before the PM task (similar to Lei (2011) and Zheng

possible as compact, i.e., pm{‘szzk,— di, pmf‘E:zk,. The conditions et al. (2010)). The starting time and the completion time of this
when the operation Oy is interrupted with the PM task can be phase are (s11, S12, S13) and (e, e12, €13), respectively, where
concluded as follows: sii=min(sy',pmk),  spp=min(s;2,pm®),  s;3=min(s;? pmk),

e;1=min(e;!,pm), ep=min(e;?,pmt), e;3=min(e;,pmlS).
e The condition for (a) and (b) is that (s;! < pmS)a(s;? >pmf‘5): Then the work of O; will be completed partially. The com-
e The condition for (c) and (d) is that (pm!® < e;> < pmkE); pleted processing time of Oy is (c11, €12, €13), where ¢q1=
e The condition for (b) and (e) is that (pme <e;! <pmf‘5); e11—S11, C12=€12—S12, and c;3=eq3—S13. Then, the remaining

1,1) (3,2) (0,2) (2,3)

M4

b .0 W 18119,24 \W

11 32 02 23
21 (0.1 (14) (34)
101&*\ 18/9,\2:\ 9,33,41 39,46,55

M3 |
0 1010,14 21,27 29,33,41
2.1 0 14 34
) (1.3) 03) (24)

9411 190212 1,3588,38,52
M2
T.o 1213,1 427,34 31,35.46

03 2,4

@
w

(1,2) (2,2) (3.3) (0,4)

123N 160182 6,313 34,4154
M1
1213,15/ %6,18.23 31,3546

1,2 2,2 33 0,4

4

3

0 10 20 30 40 50 60

Fig. 4. Fuzzy Gantt chart without considering the maintenance constraints (fuzzy makepsan=(39, 46, 55)).

(1.1) (3.2) 0,2) (2,3)
ﬂS LR 19,21,24 '5,29,3 37,46,56
10,16
M4 |
,0 16,16,17 ,21,2 33,39,45
1,1 32 0,2 2,3
(0,1) 2,1) (1,4) (3,4)
8P\ 0 22,22, 37,34,4 42,47,54
0,1
M3 |
,0,0 12,12,12 22,2226 ,34,40
0,1 21 14 34

3,1) (1,3) (0,3) (2,4)

2
1913, 20/4%\ 2,37,46 39,49,62
M2 +-E

z,f,z 13, 7 25,29,34 37,46,56
3,1 13 03 24
(1,2) 33 (22 (0,4)
P 13,13M6 9,34, 383339 36,45,53
04
M1 +
12 33 22 04

1 1 1 1 1 1 1
0 10 20 30 40 50 60

Fig. 5. Fuzzy Gantt chart with maintenance constraints (non-resumable) (fuzzy makepsan=(39, 49, 62)).
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processing time of Oy is (ry1, 12, T13), where r11=pijl—c11,
r12:pij2 —C12, and T13=Pij3 —C13.

o The phase of the PM task. The starting time and the comple-
tion time of this phase are (s»1, S22, S23) and (exq, €22, €23),
respectively, where 521:5222523:pm5‘5, and ey;=ey;=€33=
me‘s'i-dkl-

e The phase after the PM task. The starting time and the
completion time of this phase are (s31, S32, S33) and (esq, €3z,
es3), respectively, where s3; =max(e;', e21), s32=max(e;?, e2),
$33 :max(eij3s €3),  €31=S31+T11, and
€33=S33+T113.

€32=S32+T112,

Fig. 3 gives all the possible conditions which divide the
processing time window into two phases. In this case, the
condition is (s;' = pm)a(s;' < pmkF). Then, the two phases can
be described as follows:

e The phase of the PM task. The starting time and the comple-
tion time of this phase are (s11, S12, S13) and (e11, €12, €13),
respectively, where sn=s12=s13:pm;‘5, and
e13=pm +dj,.

e The phase after the PM task. The starting time and the
completion time of this phase are (s»1, S22, S23) and (ez1, €22,
e»3), respectively, where s,; =max(e;!, e11), S;o=max(e;?, e12),
523=max(eij3v e13), €21=521 +pijlv €22=522+Pij2- and e3=
$23 +p,-]-3.

€11=€1n2=

For the given example problem in Tables 1 and 2, the fuzzy Gantt
chart without considering the maintenance constraints is given in
Fig. 4. Fig. 5 gives the fuzzy Gantt chart for the same problem with
maintenance constraints under non-resumable situation, while
Fig. 6 gives the Gantt chart under resumable situation. In the three
figures, the fuzzy starting time and fuzzy completion time of each
operation are given in the Gantt chart. Both starting time and
completion time are represented by a triangle, respectively. The
fuzzy starting time of each operation is given below the base line for
each machine, while the fuzzy completion time is placed up the base
line (Lei, 2010b). For example, in Fig. 4, on the machine My, Oy,
starts at (0,0,0) and completes at (3,4,5), while Os; starts at (9,11,15)

and completes at (12,16,22). The last operation to be scheduled in
Fig. 4 is O34, and its fuzzy completion time is {39, 46, 55}.

For FJSSP with maintenance constraints under non-resumable
situation, Fig. 5 gives the fuzzy starting time and fuzzy completion
time for each operation. The maintenance activities for each
machine are also given in Fig. 5. For example, in Fig. 5, the
preventive maintenance PM, starts from 10 and ends at 16 for
machine M,. Without considering PM,, O3, may start at (11,13,17),
which is the completion time of Os;. However, in this case, the
operation Os; is interrupted with PM,. So, the new fuzzy starting
time of Os; is (16,16,17). The other three PM tasks are interrupted
with 0,4, O3, and Oy, respectively. The fuzzy makespan for the
problem under non-resumable situation given in Fig. 5 is (39,49,62),
which is obviously greater than the fuzzy makespan in Fig. 4.

Fig. 6 gives the fuzzy starting time and fuzzy completion time
for each operation under resumable situation. From Fig. 6, we can
see that if an operation is interrupted with a PM task, the
remaining work of the operation can be restarted after the
completion of the PM task. For example, O, is interrupted with
the PM task on Ms. Then, the processing duration of O, is divided
into two phases, i.e., the phase before the PM task and the phase
after the PM task. In Fig. 6, O5; starts from (0,0,0) and ends at
(5,5,5) in the first phase, while starts from (7,7,7) and ends at
(12,12,16) in the second phase. The fuzzy makespan for the
problem under resumable situation given in Fig. 6 is (40,46,55),
which is slightly greater than the makespan in Fig. 4.

4.3. Crossover operator

Like other swarm intelligent algorithm, such as GA and PSO, CRO
also has several operators to generate new solutions by learning
information from two or more solutions. In the canonical PSO, each
particle corresponds to a solution in the current population. Each
particle learns information from both the local best and the global
best to direct the search process to optimal spaces. Therefore, in this
study, similar to PSO, we propose a novel crossover function named
A-LOX (Non-ABEL and Linear Order Crossover), which combines the
two commonly used crossover approaches, ie., the linear order
crossover (LOX) and the Non-ABEL approach (Wang, 2003). In the

a1 32 32 ©02) @3
ﬂs 104 M4 /Ais 29,38,30,36.47
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11 3.2 32 02 23
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Fig. 6. Fuzzy Gantt chart with maintenance constraints (resumable) (fuzzy makepsan=(40, 46, 55)).
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proposed algorithm, A-LOX is applied in two elementary collisions,
i.e., synthesis and decomposition.

Suppose that the two parent solutions are p; and p,; the new
produced child solutions are c¢; and c;; the local best for p; and p,
are b and b, respectively; the global best is g;. Each child solution is
divided into three parts. The first part is to learn information from
the local best with possibility q;, the second part is copied from the
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other parent solution, while the last part is to study from the global
best with possibility g,. The detailed crossover operator A-LOX is
given in Fig. 7.

From the pseudo code in Fig. 7, we can conclude that the
proposed A-LOX function holds several advantages as follows.
(1) By learning information from both the local best and the global
best, the A-LOX operator will direct the search process to optimal

Procedure A-LOX ()

Input: two molecules p; and p,, two crossover possability with the best solutions ¢, and g,.

Output: two new molecules ¢; and c,.

Begin

Step 1. Randomly generate two numbers /4, and /,, where A, and &, are between [0, 1]. If & < ¢, then pa;1=b,, otherwise, pa;=p,. If h, < ¢, then pa;=gs,
otherwise, pa;=pi. If hy < g1, then pa, =b,, otherwise, pa»1=p,. If h, < ¢, then pa»,=g,, otherwise, pa,=p..

Step 2. Randomly generate two positions 7y and r,, where 1< r»;
Step 3. Copy the elments between [ry, r>] from p; and p; into the corresponding position of ¢, and ¢y, respectively;
Step 4. Delete the elements which have occured in ¢, from pay,. Delete the elements which have occured in ¢, from pa;;.
Step 5. Let i=1. Perform steps 6 to 12 until there is none element in pa;,.
Step 6. 1f i<ry, Let r=p,[i] mod len(pa,,), where len(pay,) is the length of pay,. Let ¢[i]= pa[r]. Otherwise, go to step 8.
Step 7. Delete the element at position » from payj, repleace i with i+1, go back to step 6.
Step 8. Insert each element in 7 into the empty position in ¢;. Delete all elements in 7.
Step 9. Let i=r,+1. Delete the elements which have occured in ¢| from pay,.

Step 10. Let r=p,[i] mod len(pay,). Let t[i]= paio[r].

Step 11. Delete the element at position r from pa,,, repleace i with i+1, go back to step 10.

Step 12. Insert each element in # into the empty position in ¢;. Delete all elements in 7.

Step 13. Replace pa,, and pa,, with pa,, and pas,, respectively. Produce ¢, by performing steps 5 to 12.

End

Fig. 7. Pseudo code of A-LOX function.

s B e D AR e AN ER KN AN

ez [i]=]ofefo] [efi]2 o]t [2]o]]2]
SR N 0 30 N 3 A 3 6 3

o (O [ T2 Lo IO [ [ 2 [o [ [ o] 2]
SO NN I 3 ) B B

step6 i=1, p1[1]=0, len(pan)=5, r=0, ([ 1]=pai[0]=2

i=2, pan=[02 0 1], p1[2]=0, len(par)=4, r=0, t|2]=pan[0]=0

i=3, pan=[2 0 1], p1[3]=1, len(pa)=3, r=1, {[3]=pan[1]=0
et afafofofifrjafof ]
step9 i=8
ol | [ ] ] 2]
step10 i=8, pan=[1 2], p1[8]=2, len(pa2)=2, r=0, #[8]=pai2[0]=1
i=9, paix=[ 2], p1[9]=1, len(pai2)=1, r=0, {[9]=pai2[0]=2
swepiz et f2 ool 1|1 |2]o]1[2]

Fig. 8. The example process of A-LOX.
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spaces with fast speed. (2) In learning from the two best solutions,
A-LOX arranges remaining elements according to their order in the
local best or the global best with slightly perturbation. This feature
gives the searching process the capability to escape from the local
optima. (3) Like the classical Non-ABEL method, the computational
process of the proposed A-LOX is simple and easy of implement.
Given a 3 jobs-3 machines problem, suppose the two parent
solutions to be crossover with each other are p;=[00121202
1] and p»=[2 12 1 1 2 0 0 0], respectively; the two randomly
generated positions are r;=4 and r,=7, respectively; the two
crossover possibility with the best solutions are ¢;=0.3 and
q>=0.5, respectively; the randomly generated two numbers
h;=0.2 and h,=0.4, respectively; the local best b, for p; is [2 0
120120 1], while the global best gsis[01201 2 01 2]. Then
the process of generating the child solution c; is given in Fig. 8.

4.4. Improved elementary collisions

In the canonical CRO, the four elementary reactions can be
divided into two sets: the first set includes on-wall ineffective
collision and inter-molecular ineffective collision, while the
second set includes decomposition and synthesis. The first set
completes the exploitation task, while the second set performs
the exploration function. In this study, we implemented the four
elementary reactions for solving the FJSSPs as follows.

4.4.1. On-wall ineffective collision

In the canonical CRO, like the mutation operator in the genetic
algorithm (GA), the on-wall ineffective collision is to generate a
new neighboring molecule around a given one. In this study,
several neighboring approaches are used in the on-wall ineffec-
tive collision function to make the algorithm with high level of
expolitation capability. Given a molecule w, randomly generate
two positions r; and r,, where 1<r;<r,<nxm, then, the
neighboring approaches are described as follows:

e Reverse approach. To reverse each element between ry and r3;

e Swap approach. To swap the two elements at r; and r»;

e Insert approach. To insert the element at r, before the element
at rq.

4.4.2. Inter-molecular ineffective collision

The inter-molecular ineffective collision occurs when two
molecules collide and then produce two new molecules. Similar
to the canonical CRO, in this study, the inter-molecular ineffective
collision is realized by performing independently on-wall ineffec-
tive collision for the two selected molecules. That is, in parallel,
the two molecules perform a slight change in their structure.

4.4.3. Decomposition

The decomposition reaction is to produce two or more molecules
based on one molecule. In the proposed algorithm, the decomposition
is realized as follows: firstly, randomly select a molecule from the
current population, and randomly generate a molecule; secondly,
apply the crossover operator on the two selected molecules.

4.4.4. Synthesis

The synthesis is used to produce one molecule by combining two
molecules. In the proposed algorithm, the crossover function is also
embedded in the synthesis process. The synthesis reaction is
realized as follows: firstly, randomly select two molecules from
the current population; secondly, apply the crossover operator on
the two selected molecules; thirdly, select the better one between
the two child molecules as the new molecule.

4.5. TS-based local search

The TS-based local search is introduced in the proposed
algorithm to enhance the convergence ability of HCRO. The
detailed steps of the TS-based local search are given as follows:

Step 1. Let the current solution be S.

Step 2. If the stop criterion satisfies, then stop the algorithm;
otherwise, perform steps 3 to 7.

Step 3. Let m=0

Step 4. For the current solution S, generate S, neighboring
solutions to construct a neighbor set. Evaluate each neighbor-
ing solution, and sequence each neighboring solution accord-
ing to the fitness value in a non-decreasing order.

Step 5. Select the new current solution S. by the following
rules: (1) the first neighboring solution which is not tabooed;
(2) if all solutions are tabooed, select the first solution which
satisfies the aspiration rule.

Step 6. If S¢ is better than S, then replace S. by S¢, let m=0;
otherwise, let m=m+1.

Step 7. If m is greater than [, then go back to step 2;
otherwise go back to step 4.

4.6. The framework of the HCRO algorithm

The detailed steps of the proposed HCRO algorithm are as
follows:

Step 1: Initialization phase
Step 1.1 Set the population size Pg;,;
Step 1.2 Initialize the population, let the central energy
buffer equals 0.

Step 2: Evaluate the PE value of each molecule in the

population.

Step 3: Perform the first loop body.
Step 3.1 If the stopping criterion is satisfied, output the best
solution; otherwise, perform sub-steps 3.2 to 3.6.
Step 3.2 Get r randomly in interval [0, 1], if r > MoleColl, then
perform sub-step 3.3, otherwise, perform sub-step 3.4.
Step 3.3 Select a molecule w from the population randomly,
and apply the on-wall ineffective collision on it.
Step 3.4 Randomly select two molecules from the population,
and apply the inter-molecular ineffective collision on them.
Step 3.5 Evaluate the new generated molecules, memorize
the local best for each molecule and the global best for the
current population, and perform the TS-based local search
function on the global best molecule.
Step 3.6 Evaluate the new generated molecules, if the best
solution has been updated in the latest G.,.x generations,
then go back to sub-step 3.1, otherwise, go to step 4.

Step 4: Perform the second loop body.
Step 4.1 If the stopping criterion is satisfied, output the best
solution; otherwise, perform sub-steps 4.2 to 4.6.
Step 4.2 Get r randomly in interval [0, 1], if r> MoleColl,
then perform sub-step 4.3, otherwise, perform sub-step 4.4.
Step 4.3 Select a molecule w from the population randomly,
and apply the on-wall ineffective collision or decomposi-
tion on it based on the decomposition condition.
Step 4.4 Randomly select two molecules from the popula-
tion, and apply the inter-molecular ineffective collision or
synthesis on them based on the synthesis condition.
Step 4.5 Evaluate the new generated molecules, memorize the
local best for each molecule and the global best for the
current population, and perform the TS-based local search
function on the global best molecule.
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Step 4.6 If the best solution has been updated in the latest
Gmax generations, then go back to sub-step 4.1, otherwise,
go back to step 3.

5. Numerical results

This section discusses the computational experiments used to
evaluate the performance of the proposed algorithm. Our algorithm
was implemented in C++ on an Intel Core i5 3.3 GHz PC with 4 GB
memory. The compared algorithms include SMGA (Sakawa and
Mori, 1999), GPSO (Niu et al., 2008), and RKGA (Zheng et al.,
2010). Two sets of benchmarks are tested, i.e., the four 10 jobs-10
machines problems (Sakawa and Mori, 1999; Sakawa and Kubota,
2000), the extension version of 12 10 jobs-10 machines problems
(ABZ5-6, ORB01-05, and LA16-20), and four 15 jobs-10 machines
problems (LA21-24). For the first problem set with fixed PM tasks,
we compared with the experimental results from Zheng et al. (2010)
and Lei (2010b). We coded SMGA, GPSO, and RKGA for all bench-
marks with flexible PM tasks. For SMGA, GPSO, and RKGA, we adopt
the parameter settings proposed by Sakawa and Mori (1999);
Niu et al. (2008) and Zheng et al. (2010), respectively, except the
computational times for each instance is set 100s. The best and
average results of experiments for the above 20 problems from 20
independent runs were collected for performance comparisons.

5.1. Experimental parameters

The parameter values are given as follows:

Initial population size Psj,e: 50;

Maximum generations without updating the best solution
Gmax: 1000;

KELossRate: 0.2;

MoleColl: 0.5;

Initial KE for each molecule: 100,000;

Table 3
Preventive maintenance activities for the four 10 jobs-10 machine benchmarks.

e Crossover possibility: g;=g>=0.5;

o The parameters for the TS based local search are as follows:
(1) tabu list size: nxm/2; (2) tabu tenure: n x m/2; (3) the
maximum generations without improvement to stop the local
search [ier: n x m; (4) S,=10;

e Stop condition: the maximum computational time exceeds
100s.

5.2. Experimental results on the four benchmarks from Sakawa
and Mori (1999); Sakawa and Kubota (2000)

Four benchmarks with 10 jobs-10 machines scale (Sakawa and
Mori, 1999; Sakawa and Kubota, 2000) are conducted by the
proposed algorithm. Table 3 gives the fixed PM tasks for each
machine in the above four benchmarks. In Table 3, each PM task is
represented by a pair of integer numbers, which tells the start time
and the end time of the PM task. For example, for the instance Case
1 in Table 3, the PM task on M, is indicated by (20,25), which tells
that the PM task will start at time point 20, while end at time
point 25.

5.2.1. Experimental results on the four benchmarks with fixed
PM tasks

Table 4 gives the comparisons of the experimental results on the
four benchmarks under non-resumable situation. In Table 4, there
are eight columns. The first column tells the benchmark name, while
the second column gives the name of the compared algorithm. The
following column reports the average values of the fuzzy makespan
after 20 independent runs. Then, the fourth column illustrates the
c1(.) objective value of the average fuzzy makespan for each
corresponding algorithm, where ¢(.) is computed as Section 2.1.2.
The following two columns report the optimal fuzzy makespan and
its c1(.) objective value, respectively. The last two columns display
the worst fuzzy makespan and its c¢;(.) objective value, respectively.

Case M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

1 (20,25) (10,15) (23,27) (16,21) (0,0) (13,17) (34,39) (0,0) (28,32) (0,0)

2 (44,50) (33,41) (75,83) (12,19) (63,69) (10,18) (31,39) (52,59) (23,29) (59,69)

3 (42,52) (21,34) (70,81) (12,20) (63,73) (57,69) (31,42) (55,64) (85,96) (25,33)

4 (39,52) (40,49) (23,31) (75,82) (63,71) (54,65) (31,39) (87,95) (19,30) (50,60)

Table 4
Comparisons of experimental results on the four fixed PM benchmarks (non-resumable).

Case Algorithm avg C opt c wor c

1 SMGA 50.8, 58.9, 65.8 58.60 49,58,66 57.75 51,59,66 58.75
GPSO 48.9, 58.5, 65.9 57.95 47,57,66 56.75 51,59,65 58.50
RKGA 47.5, 57.7, 66.2 57.28 41,56,70 55.75 51,59,65 58.50
HCRO 47.3, 57.6, 65.9 57.10 47,57,66 56.75 51,59,65 58.50

2 SMGA 128.8,152.8,177.3 152.93 128,152,177 152.25 132,154,176 154.00
GPSO 127.2,152.1,175.8 151.80 131,151,169 150.50 122,153,183 152.75
RKGA 129.5,151.5,173.4 151.48 131,151,169 150.50 128,152,177 152.25
HCRO 129.8,150.7,171.0 150.55 129,150,171 150.00 131,151,171 151.00

3 SMGA 130.4,152.8,173.9 152.48 135,151,164 150.25 138,156,169 154.75
GPSO 129.6,152.4,173.8 152.05 131,150,166 149.25 135,157,174 155.75
RKGA 128.2,150.2,172.1 150.18 116,146,179 146.75 134,151,176 153.00
HCRO 132.2,151.0,164.7 149.73 132,149,158 147.00 136,153,163 151.25

4 SMGA 118.2,138.4,158.4 138.35 115,139,157 137.50 123,139,155 139.00
GPSO 116.5,136.9,159.5 137.45 116,135,160 136.50 123,139,155 139.00
RKGA 117.1,136.5,157.0 136.78 124,135,148 135.50 126,139,150 138.50
HCRO 123.1,135.4,154.1 137.00 124,135,148 135.50 124,135,158 138.00
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From Table 4, we can see that: (1) the proposed HCRO algorithm
is better than the other three algorithms for solving Case 2; (2) the
optimal results obtained by HCRO is slightly worse than RKGA for
solving Case 1, while with the same worst results with RKGA and
GPSO; (3) for solving Case 4, our algorithm obtains the same optimal
result with RKGA, which is better than the other two algorithms, i.e.,
SMGA and GPSO. In addition, the worst result due to our algorithm
is the best among the four algorithms; (4) the worst results obtained
by our algorithm for the four benchmarks are the best among the
four algorithms, which verify the efficiency of HCRO; (5) the average
experimental results of our algorithm are optimal or near-optimal,
which guarantee the robustness of HCRO.

The comparisons of the experimental results on the four
benchmarks under resumable situation are given in Table 5. It
can be seen from Table 5 that: (1) the proposed HCRO algorithm
shows the best performance in average, optimal, and the worst
case for solving the four given benchmarks; (2) the average values
obtained by HCRO are obviously better than the other three
algorithms for solving the three benchmarks, i.e., Case 2, Case 3,
and Case 4, which verify the robustness of the proposed algo-
rithm; (3) the optimal solutions obtain by HCRO for solving Case
2, Case 3, and Case 4 are also obviously better than SMGA, GPSO,
and RKGA, which guarantee the exploitation capability of the pro-
posed algorithm; (4) the worst results obtained by our algorithm

Table 5

Comparisons of experimental results on the four fixed PM benchmarks (resumable).

for the last three benchmarks are greatly better than the other
three algorithms, which shows the efficiency of HCRO.

5.2.2. Experimental results on the four benchmarks with flexible
PM tasks

To make the problem more close to the reality, we realized the
proposed algorithm to solve the FJSSP with flexible PM activities.
The same four benchmarks with 10 jobs-10 machines scale are
conducted by the proposed algorithm. The flexibility is realized as
follows. Firstly, denote the time window of the each PM task as
[si, ei], where i represents the PM task for M;; secondly, let s; and e;
be the same value as given in the fixed benchmark. For example,
in Table 3, the time window for the PM task on M, is [20,25];
thirdly, expand the time window by the following steps:

Step 1. Let pt=(e;—s;)
Step 2. Let y=pt[2+w
si—y, if (si—y)>0

Step 3. Let s = { 0 otherwise

Step 4. Let e;=e;+7
where o is a random number ranges [0, 5].

Table 6 gives the comparisons of the experimental results on the
four benchmarks with flexible PM activities under non-resumable

Case Algorithm avg C opt [ wor (o}

1 SMGA 47.5, 56.6, 64.6 56.33 46, 56, 66 56.00 50,57,63 56.75
GPSO 46.4, 55.9, 64.7 55.73 33,54, 74 53.75 50,57,62 56.50
RKGA 451, 55.3, 65.3 55.25 33,54,74 53.75 50,57,62 56.50
HCRO 47.3, 54.9, 63.3 55.10 45, 52, 64 53.25 50,56,63 56.25

2 SMGA 126.5, 149.6, 172.5 149.55 121, 147, 175 147.50 128, 151, 171 150.25
GPSO 124.7, 148.8, 171.2 148.38 117, 147, 171 145.50 128, 151, 171 150.25
RKGA 126.1, 149.3, 170.6 148.83 120, 144, 170 144.50 128, 151, 171 150.25
HCRO 121.5, 141.3, 165.1 142.30 123, 141, 161 141.50 120, 142, 168 143.00

3 SMGA 126.5, 148.8, 172.1 149.05 116, 146, 176 146.00 134, 152, 163 150.25
GPSO 1304, 148.3, 164.7 147.93 129, 145, 156 143.75 136, 155, 170 154.00
RKGA 126.8, 146.5, 164.6 146.10 129, 145, 156 143.75 132, 149, 164 148.50
HCRO 127.2, 145.0, 159.1 144.08 122, 143, 164 143.00 128, 147, 158 145.00

4 SMGA 118.3, 135.4, 155.5 136.15 108, 133, 160 133.50 125, 139, 161 141.00
GPSO 113.2, 134.9, 157.1 135.03 109, 134, 153 132.50 125, 139, 158 140.25
RKGA 113.6, 135.2, 157.6 135.40 109, 135, 156 133.75 125, 139, 161 141.00
HCRO 112.6, 130.0, 151.9 131.13 109, 129, 155 130.50 113, 130, 153 131.50

Table 6

Comparisons of experimental results on the four flexible PM benchmarks (non-resumable).

Case Algorithm avg [ opt c wor c

1 SMGA 48.4, 56.3, 62.6 55.90 48, 55, 60 54.50 52, 59, 65 58.75
GPSO 47.2,54.8, 61.8 54.65 45, 54, 63 54.00 50, 57, 63 56.75
RKGA 46.9, 54.6, 61.2 54.33 45, 54, 63 54.00 45, 55, 63 54.50
HCRO 45.3, 54.0, 62.6 53.98 46, 54, 61 53.75 45, 54, 63 54.00

2 SMGA 129.0, 150.0, 170.0 149.75 124, 147, 167 146.25 136, 156, 178 156.50
GPSO 127.2, 146.8, 165.5 146.58 128, 147, 164 146.50 128, 148, 167 147.75
RKGA 126.5, 147.1, 167.6 147.08 127, 146, 167 146.50 126, 149, 166 147.50
HCRO 124.6, 146.6, 167.0 146.20 125, 146, 167 146.00 124, 147, 167 146.25

3 SMGA 132.9, 152.0, 164.8 150.43 127,143, 155 142.00 143, 163, 174 160.75
GPSO 128.5, 146.4, 159.7 145.25 120, 142, 161 141.25 135, 156, 168 153.75
RKGA 127.6, 144.3, 155.8 143.00 124, 142, 156 141.00 132, 150, 164 149.00
HCRO 125.6, 143.2, 156.1 142.03 126, 142, 151 140.25 126, 144, 158 143.00

4 SMGA 123.7,136.7, 151.2 137.08 117, 132, 150 132.75 130, 142, 158 143.00
GPSO 120.2, 132.8, 147.0 133.20 119, 131, 143 131.00 127, 138, 151 138.50
RKGA 119.5, 132.2, 146.8 132.68 116, 131, 145 130.75 123, 136, 147 135.50
HCRO 114.9, 130.3, 144.1 129.90 114, 130, 144 129.50 118, 132, 146 132.00
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situation. From Table 6, we can conclude that: (1) the proposed
HCRO algorithm is better than the other three algorithms for the
four benchmarks in finding optimal solutions, which shows the
effectiveness of the proposed algorithm; (2) HCRO can obtain better
average values than RKGA, GPSO and SMGA, for solving all the four
benchmarks, which verifies the efficiency of the proposed algo-
rithm; (3) in comparison of the worst results of the four algorithms,
HCRO shows the best performance.

The comparisons of the experimental results on the four bench-
marks with flexible PM activities under resumable situation are
given in Table 7. It can be seen from Table 7 that: (1) the proposed
HCRO algorithm shows the best performance in average, optimal,
and the worst case for solving the two benchmarks, i.e., Case 2 and
Case 3; (2) the optimal results for the four benchmarks due to our
algorithms are the best, which shows the searching ability of HCRO;
(3) the average results and the worst results obtained by HCRO are
also the best among the four algorithms, which verify the robustness
of the proposed algorithm.

5.3. Experimental results on the 16 benchmarks with flexible
PM activities

In this section, 16 instances are used, which are the extension

version the classical JSSP instances, i.e., 10 jobs-10 machines
problems (ABZ5-6, ORB01-05, and LA16-20), and 15 jobs-10

Table 7

Comparisons of experimental results on the four flexible PM benchmarks (resumable).

machines problems (LA21-24). To make the given 16 benchmarks
be fuzzy JSSP instances, similar to Lei (2011), for each operation
0;; of each extended instance, p;j=(p;j— &, Dij» Dij+ Bij), where pj; is
the corresponding deterministic processing time of the operation
oj, integer value o;;€[0.06p;;,0.15p;], Bije[0.1p;;,0.19p,]. If B <1,
then f;;e[1,2]. For simplicity, the extended instances are called
ABZ5-PM, ABZ6-PM, ORBO1-PM, and so on.

The fixed preventive maintenance activities for the 16 bench-
marks are given in Table 8. The flexible PM for these instances are
realized through the steps listed in Section 5.2.2. We coded SMGA,
GPSO, and RKGA for comparison. In order to verify the performance
of the proposed algorithm, we also coded the canonical CRO
(denoted by CRO-I), and the proposed HCRO without TS-based local
search (denoted by CRO-II). For SMGA, GPSO, and RKGA, we adopt
the parameter settings proposed by Sakawa and Mori (1999), Niu
et al. (2008), and Zheng et al. (2010), respectively, except the
computational times for each instance is set 100 s.

To make detailed comparisons among the six algorithms, we
define three distances as follows. Denote Dy, as the distance to the ¢;
objective value of the best fuzzy makespan, D, as the distance to the
c; objective value of the minimum worst fuzzy makespan, and D,y as
the distance to the c¢; objective value of the minimum average fuzzy
makespan. The best, the minimum worst value, and the minimum
average fuzzy makespan are collected by the experimental results of
the six compared algorithms after 20 independent runs, respectively.

Case Algorithm avg G opt C wor G
1 SMGA 46.7, 55.3, 63.1 55.10 46, 54, 61 53.75 50, 57, 63 56.75
GPSO 458, 54.1,63.2 54.30 46, 54, 61 53.75 45, 55, 68 55.75
RKGA 45.5,54.1,61.9 53.90 44, 54, 62 53.50 48, 55, 60 54.50
HCRO 45.6, 54.0, 61.9 53.88 44, 54, 62 53.50 46, 54, 62 54.00
2 SMGA 122.3, 145.9, 168.9 145.75 118, 141, 166 141.50 130, 152, 171 151.25
GPSO 121.1, 141.3, 161.3 141.25 123, 138, 154 138.25 127, 147, 163 146.00
RKGA 120.6, 141.2, 161.6 141.15 123, 138, 154 138.25 127, 147, 163 146.00
HCRO 124.0, 139.2, 154.2 139.15 123, 138, 154 138.25 124, 140, 155 139.75
3 SMGA 129.9, 149.1, 167.3 148.85 126, 144, 157 142.75 137, 158, 176 157.25
GPSO 125.3, 144.4, 159.0 143.28 117, 144, 154 139.75 128, 147, 162 146.00
RKGA 123.2, 143.2, 157.8 141.85 121, 140, 156 139.25 122, 144,173 145.75
HCRO 124.2, 141.9, 156.5 141.13 122, 136, 158 138.00 123, 142, 163 142.50
4 SMGA 119.8, 136.3, 153.3 136.43 109, 130, 150 129.75 133, 148, 161 147.50
GPSO 116.2, 131.8, 148.4 132.05 114, 130, 144 129.50 119, 136, 164 138.75
RKGA 119.0, 132.1, 149.3 133.13 114, 130, 144 129.50 125, 136, 149 136.50
HCRO 112.8, 129.9, 146.3 129.73 117, 129, 141 129.00 113, 130, 148 130.25
Table 8
Preventive maintenance activities for the 16 benchmarks.
Benchmark M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
ABZ5-PM (231, 270) (115, 161) (365, 405) (657, 680) (372, 418) (564, 589) (345, 390) (749, 795) (220, 258) (698, 730)
ABZ6-PM (115, 161) (231, 270) (365, 405) (757, 780) (172, 218) (564, 589) (345, 390) (49, 95) (220, 258) (698, 730)
ORB01-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (49, 95) (220, 258) (398, 430)
ORB02-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (49, 95) (220, 258) (398, 430)
ORB03-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (49, 95) (220, 258) (398, 430)
ORB04-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (49, 95) (220, 258) (398, 430)
ORB05-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (49, 95) (220, 258) (398, 430)
LA16-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA17-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA18-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA19-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA20-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA21-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA22-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA23-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
LA24-PM (415, 461) (231, 270) (365, 405) (557, 580) (172, 218) (564, 589) (345, 390) (149, 195) (220, 258) (398, 430)
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The formula for Dy, Dy, and Dgy,, are as follows:
cb—cb . cv—cy . ct—ct
Dy = ch b 100%, D= CC’V)V b % 100%, Dayg = ch b

x 100% (4)

where, €2, C%, and C? represent the best, the minimum worst, and
the average c; objective value obtained by the compared algorithm,
respectively, while Cﬁ, C}, and Cj represent the best, the minimum
worst, and the minimum average c; objective value collected by the
six compared algorithms.

Tables 9-11 give the comparisons of the experimental results
on the 16 extended benchmarks with flexible PM activities under
resumable situation. The compared algorithms are SMGA, GPSO,
RKGA, CRO-I, CRO-II, and HCRO. In Table 9, the first column
displays the benchmark name; the second column tells the best
fuzzy makespan collected by the six algorithms after 20 indepen-
dent runs; the following column illustrates the c; objective value
of the obtained best fuzzy makespan for the corresponding
benchmark; the remaining six columns list Dy, values obtained
by SMGA, GPSO, RKGA, CRO-II, CRO-I, and HCRO, respectively.
Table 10 gives the comparison results on D, while Table 11
displays the comparison results on Dgyg.

From Table 9, we can conclude that: (1) for solving the 16
extended benchmarks with flexible PM activities, on average, the
proposed HCRO shows better performance in finding optimal
solutions than the other five compared algorithms, i.e., SMGA,

Table 9
Comparisons of Dy, on the 16 flexible PM benchmarks (resumable).

GPSO, RKGA, CRO-I, and CRO-II; (2) HCRO obtained 11 optimal
results out of 16 benchmarks, RKGA found three best solutions,
the canonical CRO got two best values, and the proposed CRO-II
collected four optimal results; (3) for comparison on the average
performance in finding best values, on average, HCRO is the best
among the six compared algorithms, which almost converges to
the best value for each benchmark; CRO-II shows slightly worse
performance than HCRO, which is better than the other four
algorithms; then, the following algorithms are RKGA, GPSO, CRO-
I, and SMGA, respectively; (4) the canonical CRO (CRO-I) obtained
optimal solutions for two benchmarks, i.e., ORB02-PM and LA19-
PM, while the distance D, obtained by CRO-I, for solving LA21-
PM, is slightly worse. The above analysis tells that CRO-I holds
exploitation capability for several benchmarks, but the robustness
should be improved; (5) HCRO shows better performance than
the canonical CRO for solving 12 benchmarks, except ABZ6-PM,
ORB02-PM, ORB04-PM, and LA19-PM, which verify the advantage
of the proposed algorithm.

The minimum worst fuzzy makespan obtained by all com-
pared algorithm is collected for each benchmark. The distance D,
for each compared algorithm is listed in Table 10 for each
corresponding benchmark. It can be concluded from Table 10
that: (1) HCRO obtained 12 minimum worst values out of 16
benchmarks, while the numbers for other compared algorithms
are 2, 1, 1, 0 and O, for RKGA, CRO-I, GPSO, CRO-II, and SMGA,

Benchmark Best fuzzy makespan c SMGA GPSO RKGA CRO-I CRO-II HCRO
ABZ5-PM 1153,1279,1418 1282.25 1.83 0.58 0.92 0.94 0.51 0.00
ABZ6-PM 892,972,1077 978.25 1.48 0.59 0.00 0.26 0.79 0.69
ORBO1-PM 1010,1128,1269 1133.75 1.76 0.66 1.79 2.09 0.60 0.00
ORB02-PM 840,940,1040 940.00 4.81 0.40 1.38 0.00 0.11 0.11
ORBO03-PM 1044,1096,1167 1100.75 6.38 2.38 1.66 2.95 0.84 0.00
ORB04-PM 994,1046,1164 1062.50 3.67 1.22 0.00 0.24 0.89 0.89
ORBO05-PM 883,924,1023 938.50 6.18 4.18 3.14 2.82 0.00 0.00
LA16-PM 879,989,1113 992.50 1.21 0.65 1.16 1.23 0.71 0.00
LA17-PM 726,803,902 808.50 3.28 2.01 1.48 2.57 0.00 0.00
LA18-PM 837,874,917 875.50 2.46 0.20 0.00 0.57 0.31 0.31
LA19-PM 793,879,974 881.25 2.52 1.11 1.82 0.00 2.13 145
LA20-PM 879,936,1018 942.25 2.55 0.74 1.22 1.96 1.27 0.00
LA21-PM 1009,1120,1241 1122.50 6.21 0.73 1.05 4.50 1.02 0.00
LA22-PM 878,979,1106 985.50 3.75 3.04 0.86 4.06 0.00 0.00
LA23-PM 973,1076,1195 1080.00 3.73 0.35 0.12 3.13 0.00 0.00
LA24-PM 889,992,1099 993.00 1.81 1.31 0.13 4.96 0.76 0.00
Average performance 3.35 1.26 1.04 2.02 0.62 0.22
Table 10
Comparisons of Dy, on the 16 flexible PM benchmarks (resumable).
Benchmark Minimum worst C SMGA GPSO RKGA CRO-I CRO-II HCRO
ABZ5-PM 1187,1308,1464 1316.75 3.04 0.89 0.49 2.26 0.04 0.00
ABZ6-PM 955,997,1054 1000.75 1.60 1.25 0.95 0.20 1.22 0.00
ORB01-PM 1138,1199,1288 1206.00 1.08 0.50 0.00 0.60 0.37 0.62
ORB02-PM 903,961,1038 965.75 5.02 5.05 217 4.71 1.24 0.00
ORB03-PM 1099,1167,1249 1170.50 1.35 1.52 0.36 0.88 0.83 0.00
ORB04-PM 1022,1096,1194 1102.00 4.06 1.45 1.70 3.36 0.43 0.00
ORBO05-PM 964,1009,1070 1013.00 1.97 0.00 1.46 0.30 0.17 0.17
LA16-PM 964,1025,1126 1035.00 2.97 0.85 1.01 1.23 0.77 0.00
LA17-PM 802,844,903 848.25 1.33 0.50 0.00 1.27 1.21 0.18
LA18-PM 828,907,1008 912.50 3.04 0.03 1.29 0.00 0.47 0.19
LA19-PM 828,907,1009 912.75 1.48 0.85 1.86 0.88 0.03 0.00
LA20-PM 911,967,1025 967.50 1.27 1.96 0.67 0.13 0.31 0.00
LA21-PM 1091,1150,1226 1154.25 8.19 2.71 0.37 6.54 0.17 0.00
LA22-PM 947,1013,1099 1018.00 6.83 1.77 0.42 6.36 0.37 0.00
LA23-PM 1050,1111,1172 1111.00 3.24 0.11 0.11 7.63 0.23 0.00
LA24-PM 976,1028,1086 1029.50 7.97 2.82 2.11 10.85 0.68 0.00
Average performance 3.40 1.39 0.94 2.95 0.53 0.07
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Table 11
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Comparisons of Dgyg on the 16 flexible PM benchmarks (resumable).

Benchmark Best average fuzzy makespan c1 SMGA GPSO RKGA CRO-1 CRO-II HCRO
ABZ5-PM 1185.4,1294.1,1428.1 1300.43 2.37 0.51 0.89 1.37 0.00 0.12
ABZ6-PM 904.1,984,1090.8 990.73 1.02 0.21 0.00 0.09 0.33 0.13
ORBO1-PM 1084.7,1165.9,1265.6 1170.53 2.32 0.46 0.72 0.67 0.15 0.00
ORB02-PM 878.4,953.2,1044.9 957.43 4.65 0.91 0.78 2.20 0.72 0.00
ORB03-PM 1066.4,1140.5,1231 1144.60 3.07 1.03 0.00 1.86 0.30 0.00
ORB04-PM 997.8,1081.1,1185.6 1086.40 2.44 0.98 0.35 1.76 0.92 0.00
ORB05-PM 899.8,975.6,1069.4 980.10 3.16 1.54 0.61 1.08 0.00 0.00
LA16-PM 927,1002.3,1106 1009.40 2.48 0.72 1.59 0.86 1.05 0.00
LA17-PM 757,825.2,909.8 829.30 217 0.98 0.33 1.68 0.13 0.00
LA18-PM 815.9,890.3,987.7 896.05 245 0.00 0.40 0.30 0.09 0.08
LA19-PM 820.3,896.8,994 901.98 1.24 0.28 0.79 0.58 0.20 0.00
LA20-PM 883.2,952.7,1036.9 956.38 1.67 0.54 0.62 0.82 0.57 0.00
LA21-PM 1037.9,1130.3,1243.4 1135.48 8.17 1.91 1.20 6.50 0.85 0.00
LA22-PM 919.2,998.9,1098.5 1003.88 7.14 1.82 0.49 5.05 0.00 0.17
LA23-PM 1003.9,1085.6,1184.4 1089.88 4.19 0.32 0.25 462 0.06 0.00
LA24-PM 928,1007.7,1103.7 1011.78 8.57 1.89 0.62 6.76 0.12 0.00
Average performance 3.57 0.88 0.60 2.26 0.34 0.03
Average computational time (sec) 69.23 49,51 48.52 72.28 47.49 49.52
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Fig. 9. Comparison of convergence curve of ¢; objective value for ABZ5-PM.

respectively; (2) on average, considering the worst fuzzy make-
span after 20 independently runs, HCRO is the best among the six
algorithms, the following algorithms are CRO-II, RKGA, GPSO,
CRO-I, and SMGA.

Table 11 tells the comparison on the experimental results of
the average performance for solving the given 16 benchmarks
with flexible PM activities. It can be seen from Table 11 that:
(1) HCRO obtained the best average values for solving 12
instances, except ABZ5-PM, ABZ6-PM, LA18-PM, and LA22-PM,
while the other algorithms can only obtain best values for at most
three instances; (2) HCRO holds the best average performance
among the six algorithms, the following algorithms are CRO-II,
RKGA, GPSO, CRO-I, and SMGA; (3) the average computational
time for each algorithm is given in the last row in Table 11. HCRO
consumed about 50s, which can be acceptable in realistic
production horizon. However, the average computational time
of the canonical CRO is obviously larger than HCRO, which again
verify the convergence ability of the proposed algorithm.

To make detailed comparisons between the proposed HCRO
and the canonical CRO, Figs. 9 and 10 give the comparison of the
average convergence ability between HCRO and the canonical
CRO (CRO-I), for solving the two instances with different problem
scales, i.e.,, 10 jobs-10 machines (ABZ5-PM), and 15 jobs-10

0O 10 20 30 40 50 60 70 80 90 100
Run time (second)

Fig. 10. Comparison of convergence curve of c¢; objective value for LA21-PM.

machines (LA21-PM), respectively. From the two figures, we can
conclude that the proposed HCRO algorithm has better conver-
gence ability than the canonical CRO for solving both the medium
scale 10 jobs-10 machines problem, and the relative large scale 15
jobs-10 machines problem.

6. Conclusion

In this study, a hybrid algorithm combing the chemical-
reaction optimization and the tabu search algorithm is proposed
for solving the fuzzy job-shop scheduling problem with flexible
preventive maintenance activities. The detailed encoding and
decoding mechanism is developed for the problem. The main
contributions of the proposed HCRO are as follows:

(1) To enhance the exploitation capability of the proposed algo-
rithm, TS-based local search is embedded in HCRO;

(2) In the canonical CRO, decomposition and synthesis reactions are
used to produce molecules with very different structures. That
is, the above two reactions complete the exploration task in the
evolution phase. To make the two reactions perform exploration
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functions while maintaining convergence capability, a well-
designed crossover operator is developed in HCRO;

HCRO divides the evolution phase into two loop bodies: the
first loop body contains on-wall ineffective collision, inter-
molecular ineffective collision; the second loop body includes
all the four elementary reactions. The evolution phase begins
with the first loop body, that is, the exploitation task is firstly
been performed. When the exploitation cannot be continued
after certain number of generations, the second loop body
started to perform both exploration and exploitation function.
Then, the two loop bodies run alternatively.

—
w
—

Two sets of benchmarks with flexible PM activities are tested
to make a detailed comparison between HCRO and other efficient
algorithms from the literature. The benchmarks range from 10
jobs-10 machines to 15 jobs-10 machines. Experimental results
show the robustness and efficiency of the proposed algorithm.
The future work is as follows:

(1) To improve the four elementary reactions and enhance the
balance between the exploitation and exploration, and to
increase the simulation result reliability;

To apply the proposed algorithm for solving other potential
applications, such as the fuzzy flexible job-shop scheduling
problem with flexible PM activities, and the flexible flow shop
scheduling problem with flexible PM activities;

(3) To apply HCRO for solving other kinds of job-shop scheduling
problems, such as multi-objective JSSP, JSSP with setup-time,
and no-wait JSSP. The proposed HCRO is suitable to be applied
to JSSP in general, after completing the following issues:
(a) problem adaptive encoding and decoding mechanism;
(b) improved elementary reactions; (c) neighborhood struc-
ture considering the problem structure.

To apply the design of experiment (DoE) method to determine
parameters for the experiments.

(2

—

(4

~
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